Mississippi Mills Wastewater System

2017 Annual Report

January 1, 2017 – December 31, 2017

Prepared By

This report has been prepared to meet the requirements set out in the facility Certificate of Approval #42425-8DXR5U issued February 16, 2011 and Certificate of Approval #1637-AC8NT7.

Compliance Report Card1
System/Process Description1
Primary Treatment1
Chemical Addition1
Secondary Treatment1
Tertiary Treatment1
Solids Handling1
Septage Receiving2
Proposed Alterations, Extensions, or Replacement to Works
Effluent Quality Assurance or Control Measures2
Treatment Flows
Raw Flow (m ³ /d)
Annual Comparison (m ³)
Septage Volumes
Monthly Received4
Monthly Processed4
Raw Sewage Quality4
Effluent Quality
Effluent Exceedance Summary5
Limit
Other Effluent Sampling Issues
Effluent Parameter Summary6
CBOD5
Total Suspended Solids7
Total Phosphorus
Total Ammonia Nitrogen9
E-coli10
pH10
Acute Lethality11
Septage Quality11

Biosolids	11
Biosolids Disposal Summary	11
Annual Comparison	11
Quality	12
Summary of Complaints	12
Summary of Bypass/Overflows	12
Summary of Spills/Abnormal Discharges	13
Maintenance	13
Maintenance Highlights	14
Calibration	14

Appendix

Facility Assessment Report	A
Septage Sample Data	В
Biosolids Application Summary	С
Calibration Records	D

Compliance Report Card

Compliance Event	# of Events	Details
Ministry of Environment Inspections	0	
Ministry of Labour Inspections	0	
Effluent Parameter Exceedances	0	
Bypass/Overflows	5	 April 6 – Filtrate Bypass April 10 – PLC Crash May 1 – Filtrate Bypass June 29 – Filtrate Bypass October 30 – Filtrate Bypass
Community Complaints	0	
Spills	0	

System/Process Description

Primary Treatment

Flow enters the treatment and passes through screen channels which contain fine screens that lead to a screw compactor. Grit is removed using circular vortex grit removal, air lift and grit classifier system units

Chemical Addition

Chemicals are added to the process for phosphorus control.

Secondary Treatment

The Mississippi Mills WPCP supports a Two (2) treatment train system using the extended aeration activated sludge process. Each train is equipped with aeration tanks, anoxic tanks and a secondary clarifier.

Tertiary Treatment

There are Five (5) filter trains with three (3) filtration cells in each. Disinfection is provided using Ultraviolet (UV) lights. There is ability for chlorine disinfection in the event the UV units fail.

Solids Handling

Solids from the biological process are transferred from the waste tank to a rotary disk thickener. From there the solids are processed through autothermic thermophilic aerobic digesters. The solids are then pressed to a cake form.

Septage Receiving

The Mississippi Mills WWTP also consists of a septage receiving station consisting of a storage tank, two (one duty and one standby) dry-pit pumps, and a grinder on the inlet piping

Proposed Alterations, Extensions, or Replacement to Works

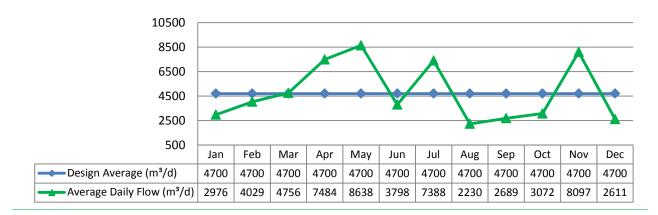
There are no proposed alterations, extensions or replacements that would affect the Certificate of Approval.

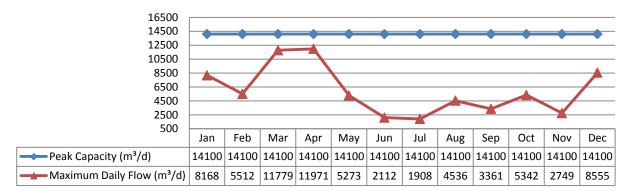
Effluent Quality Assurance or Control Measures

The Municipality of Mississippi Mills facilities are part of OCWA's operational Mississippi Cluster. The facilities are supported by regional and corporate resources. Operational Services are delivered by OCWA staff that live and work in the community.

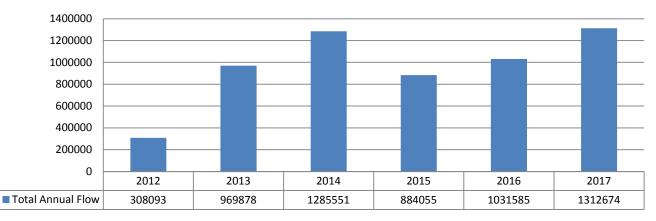
OCWA operates facilities in compliance with applicable regulations. The facility has comprehensive manuals detailing operations, maintenance, instrumentation, and emergency procedures. All procedures are treated as active documents, with annual reviews.

OCWA has additional "Value Added" and operational support services that the Municipality of Mississippi Mills benefits from including:

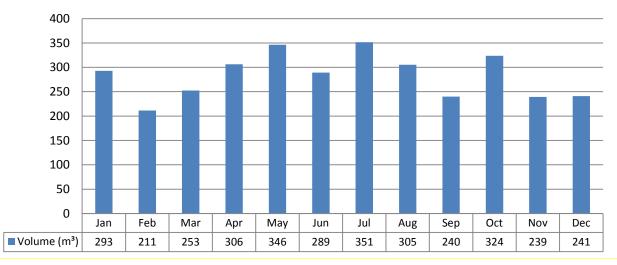

- Access to a network of operational compliance and support experts at the regional and corporate level, as well as affiliated programs that include the following:
 - Quality & Environmental Management System, Occupational Health & Safety System and an internal compliance audit system.
 - Process Data Management (PDM) facility operating information repository, which consolidates field data, online instrumentation, and electronic receipt of lab test results for reporting, tracking and analysis.
 - Work Management System (WMS) that tracks and reports maintenance activity, and creates predictive and preventative reports.
 - Outpost 5 wide-area SCADA system allows for process optimization and data logging, process trending, remote alarming and optimization of staff time.
- Client reporting which includes operational data, equipment inventory, financial statements, maintenance work orders, and capital status reports
- Site-Specific Contingency Plans and Standard Operating Procedures
- Use of accredited laboratories
- Additional support in response to unusual circumstances, and extra support in an emergency.
- Use of sampling schedules for external laboratory sampling

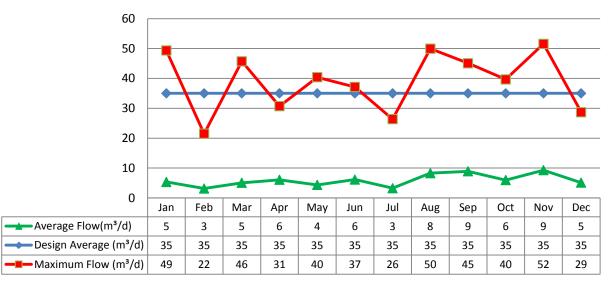

Treatment Flows

Raw Flow (m³/d)


Annual average flow for 2017 = 2816.59 m³/d

Flow spikes are associated to wet weather events such as rain and seasonal changes such as the spring snow melt.


Annual Comparison (m³)


Septage Volumes

Average daily flow for 2017 = 5.905m³/d Total Flow for 2017 = 2161 m³

Total Monthly Volume Received

Monthly Volumes Processed

Average Flow (m^3/d) is the total sum of the volume of the loads received for the month which is then divided by the days in the month.

Design Average (m^3/d) sets the capacity limit based on the total sum of the volume of the loads received for the month which is then divided by the days in the month.

Maximum Flow (m³/d) indicates largest single day volume received in the month

Raw Sewage Quality

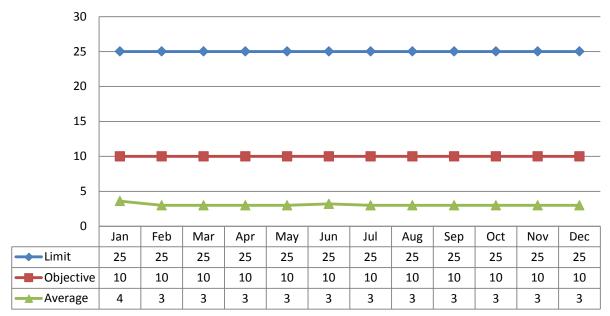
Results of raw sewage concentrations and loadings are available in the Facility Performance Assessment Report in Appendix A.

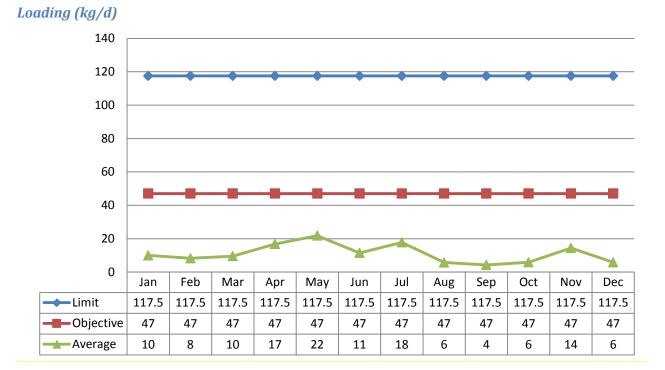
Effluent Quality

The limits are based on current requirements in the facilities Environmental Compliance Approval. Laboratory samples are submitted to an accredited laboratory for regulatory analysis.

The Federal Government also regulates certain sewage effluent parameters under the Federal Fisheries Act. The results are submitted to Environment and Climate Change Canada's Effluent Regulatory and Reporting Information System (ERRIS) on a quarterly basis.

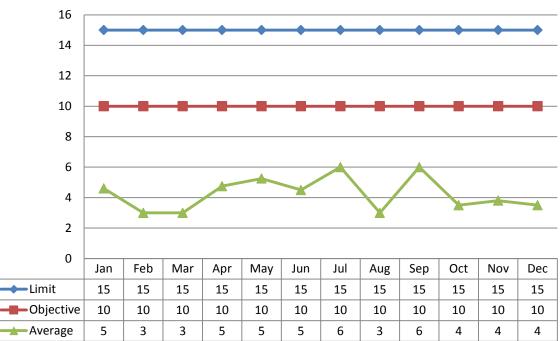
Effluent Exceedance Summary

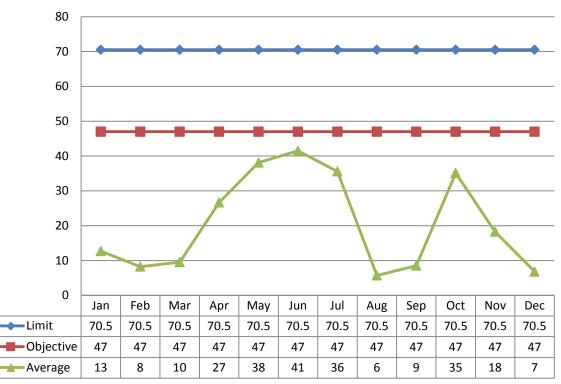

Limit						
Sample	Date	Parameter	Exceedance of	Limit	Value	Corrective Action
There were no effluent exceedances.						
Other Effluent Sampling Issues						


Sample	Legislation	Date	Details	Response
There were no o	ther operationa	l issues affecting	g effluent quality	

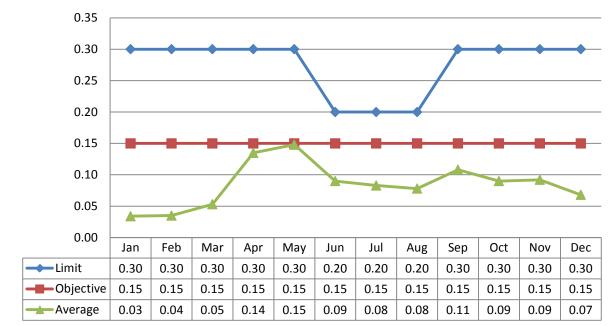
Effluent Parameter Summary

CBOD5

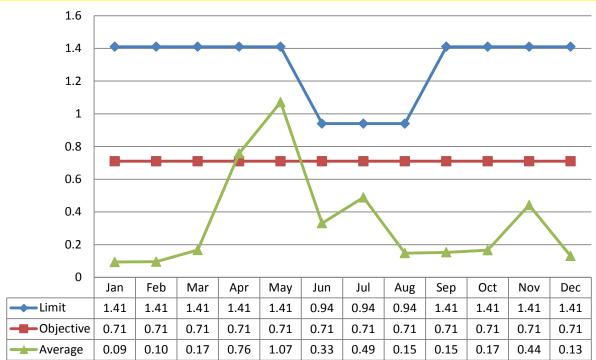




Total Suspended Solids



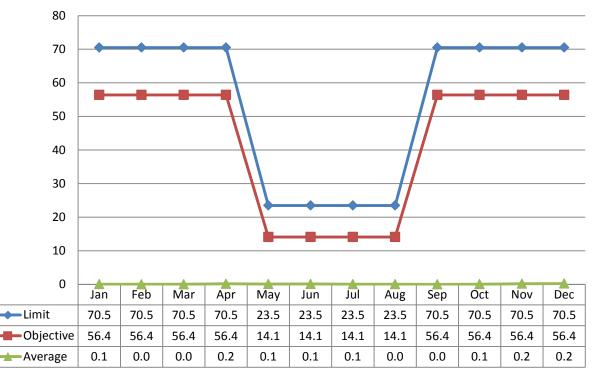
Loading (kg/d)



Total Phosphorus

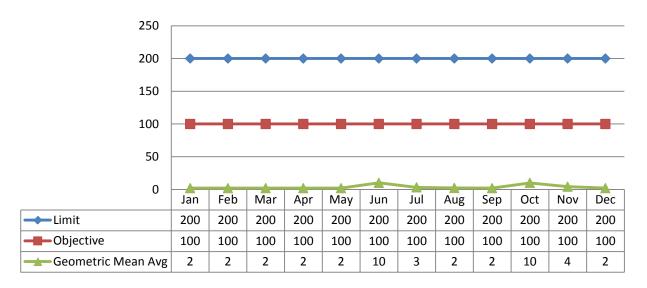
Concentration (mg/L)

Loading (kg/d)

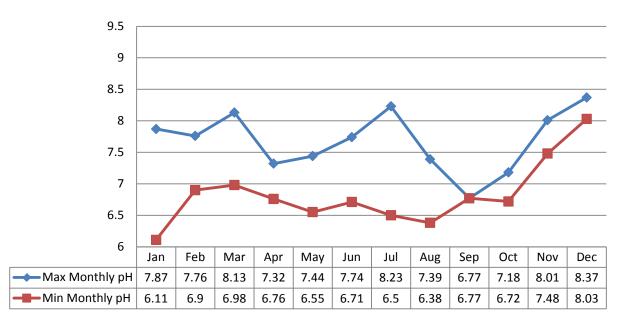


Total Ammonia Nitrogen

Concentration (mg/L)


Loading (kg/d)

E-coli


Geometric Mean Average

All individual sample results were lower than the reportable value of <2.

рΗ

This parameter is tested in-house.

Acute Lethality

There were four (4) samples collected in 2017 and tested for acute lethality (Rainbow Trout and Daphnia Magna). Results are displayed as % mortality.

Quarter	Rainbow Trout	Daphnia Magna
1 st Quarter	0%	0%
2 nd Quarter	0%	0%
3 rd Quarter	0%	0%
4 th Quarter	0%	0%

Septage Quality

Septage was tested when received. A summary of the results are attached in Appendix B. Grab samples are collected from each load.

Biosolids

Sludge generated from the treatment plant was spread on agricultural land during the spreading season as per the Nutrient Management Act O.Reg 267/03. This facility dewaters and biosolids are handled as cake. During the winter cake is stored on-site until certified sites are ready for spreading.

During the spreading season the operating authority contracts cake haulage to Terratec Environmental. This company maintains a bank of available land for agricultrual disposal of biosolids. This information is included in Appendix C.

Biosolids Disposal Summary

The disposal summary is provided by Terratec (Waste Management #4400-4LBLXD) and is available in Appendix C.

1200 1000 800 600 400 200 0 2014 2015 2016 2017 Annual Sludge Volume (tonnes) 767.12 974.75 766.89 788.37

Annual Comparison

It is anticipated that sludge volumes will remain constant based on the average treated volumes and past years history since the upgrades.

Quality

The biosolids sampling results are summarized in Appendix C. All results met the established guidelines.

Summary of Complaints

The following community complaints were received related to the operations of the Mississippi Mills WWTP.

Date	Location	Details	Corrective Action Taken
There were no	complaints received	at the treatment plant	

Summary of Bypass/Overflows

Event	Details of Events	Volume (m³)	Duration (h)
April 6 – Filtrate Bypass	During a period where the entire plant was experiencing elevated flows due to heavy rain and snow melt this system was hydraulically overloaded. The overflow water from the filtrate tank was directed to the effluent channel through the overflow pipe, as designed, from the tank to upstream of U.V. disinfection.	Unknown	46 hr 20 min
April 10 – Filtrate Bypass	The main PLC for the Wastewater Treatment plant 'crashed' thus freezing data, trending, equipment run status and alarms. The pumps that maintain the filtrate tank level were unknowingly faulted due to this PLC failure and were not running thus causing the Filtrate Tank level to reach its engineered overflow pipe that discharges to the U.V. channel.	Unknown	8 hr 34 min
May 1 – Filtrate Bypass	During a period where the entire plant was experiencing elevated flows due to heavy rain and snow	Unknown	2 hr 16 min

	melt this system was hydraulically overloaded. The overflow water from the filtrate tank was directed to the effluent channel through the overflow pipe, as designed, from the tank to upstream of U.V. disinfection.		
June 29 – Filtrate Bypass	During a period where the entire plant was experiencing elevated flows due to heavy rain and snow melt this system was hydraulically overloaded. The overflow water from the filtrate tank was directed to the effluent channel through the overflow pipe, as designed, from the tank to upstream of U.V. disinfection.	Unknown	0.45
October 30 – Filtrate Bypass	During a period where the entire plant was experiencing elevated flows due to heavy rain and snow melt this system was hydraulically overloaded. The overflow water from the filtrate tank was directed to the effluent channel through the overflow pipe, as designed, from the tank to upstream of U.V. disinfection.	Unknown	5 hr 30 min

Summary of Spills/Abnormal Discharges

There were no spills or abnormal discharges reported in 2017.

Maintenance

OCWA uses a risk-based preventative maintenance framework that ensures assets are maintained to manufacturer's and/or industry standards. Maintenance is completed using various tools and operational supports. The Eastern Regional Hub has specialized certified staff such as Millwrights, Electricians and Instrumentation Specialists to name a few.

OCWA uses a Workplace Maintenance System (WMS). WMS is a maintenance tracking system that can generate work orders as well as give summaries of completed and scheduled work. During the year, the operating authority at the facility generates scheduled work orders on a weekly, monthly and annual basis. The service work is recorded in the work order history. This ensures routine and preventive

maintenance is carried out. Emergency and capital repair maintenance is completed and added to the system.

Capital projects are listed and provided to the Municipality of Mississippi Mills in the form of a "Capital Forecast". This list is developed by facility staff and provides recommendations for facility components requiring upgrading or improvement.

Maintenance Highlights

WO #	Summary
375717	Headworks EAU repair
409513	RAS 621 Seal Fail
439768	Septage Hose Replacement
439772	UV Parts
541076	Filtrate Tank Clean Out
542710	Change room Roof Leak
577580	Foam Sensor Air Solenoid Valve
542028	Compressor and Scum pump integration
577311	Server Hard Drive Fail

Calibration

The flow meters were calibrated on January 13, 2017. Records are attached in Appendix D. Analyzers are scheduled for monthly maintenance in the WMS program. Work is completed and logged in the logbook and in the WMS.

Appendix A

Facility Assessment Report

Ontario Clean Water Agency Performance Assessment Report Wastewater/Lagoon

From: 01/01/2017 to 31/12/2017

Report extracted 03/29/2018 09:08

Facility: [5678] MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY

Works: [110000873]

	гг	01/2017	L L	02/2017		03/2017	11	04/2017	1	05/2017		06/2017	<u> </u>	07/2017		08/2017		09/2017	T	10/2017	T	11/2017	<u> </u>	12/2017	1	-Total>	1	<avg></avg>	ĒΤ	<max></max>
Flows:		01/2011		02/2011		00/2011		04/2011		00/2011		00/2011		0112011		00/2011		03/2011		10/2011		11/2017		12/2017	-	Total >		< /wg. >	+	
Raw Flow: Total - Raw Sewage (m³)		92248.91		112801.08		147435.58		224530.50		267779.60		113949.20		229035.32		69136.20		80656.08		95229.63		242903.22		80938.75	17	56644.07				
Raw Flow: Avg - Raw Sewage (m³/d)		2975.77		4028.61		4755.99		7484.35		8638.05		3798.31		7388.24		2230.20		2688.54		3071.92		8096.77		2610.93				4813.97	, t	
Raw Flow: Max - Raw Sewage (m ³ /d)		4224.81		12873.25		12945.68		18708.00		17677.30		15308.90		14818.79		5000.96		21661.11		17945.04		15951.14		3230.95						21661.11
Eff. Flow: Total - Final Effluent (m ³)		85654.00		77046.45		98600.89		168367.51		225144.20		107273.56		183771.32		59259.08		42605.26		60492.10		144200.12		60259.45	13	12673.94				
Eff. Flow: Avg - Final Effluent (m ³ /d)	П	2763.03		2751.66		3180.67		5612.25		7262.72		3575.79		5928.11		1911.58		1420.18		1951.36		4806.67		1943.85				3592.32		
Eff. Flow: Max - Final Effluent (m³/d)		3695.22		5309.79		5133.99		9591.00		10689.30		7039.15		8728.04		4940.24		2280.76		8691.77		7549.22		2663.34						10689.30
Carbonaceous Biochemical Oxygen Demand: CBOD:																														
Raw: # of samples of cBOD5 - Raw Sewage (mg/L)		6		4		4		4		4		4		4		5		4		4		5		4		52				
Eff: Avg cBOD5 - Final Effluent (mg/L)	<	3.600	<	3.000	<	3.000	<	3.000	<	3.000	<	3.200	<	3.000	<	3.000	<	3.000	<	3.000	<	3.000	<	3.000			<	3.067	<	3.600
Eff: # of samples of cBOD5 - Final Effluent (mg/L)		5		4		4		4		4		5		4		5		3		5		5		4		52				
Loading: cBOD5 - Final Effluent (kg/d)	<	9.947	<	8.255	<	9.542	<	16.837	<	21.788	<	11.443	<	17.784	<	5.735	<	4.261	<	5.854	<	14.420	<	5.832			<	10.975	<	21.788
Percent Removal: cBOD5 - Raw Sewage (mg/L)		97.004		96.712		96.215		96.481		94.570		98.463		96.129		98.981		99.237		99.464		98.527		98.890						99.464
Biochemical Oxygen Demand: BOD5:																														
Raw: # of samples of BOD5 - Raw Sewage (mg/L)		6		4		4		4		4		4		4		5		4		4		5		4		52				
Eff: Avg BOD5 - Final Effluent (mg/L)	<	3.000	<	3.000	<	3.000	<	3.000	<	3.000	<	4.000	<	3.000	<	3.200	<	3.000	<	4.600	<	3.400	<	3.000			<	3.267	<	4.600
Loading: BOD5 - Final Effluent (kg/d)	<	8.289	<	8.255	<	9.542	<	16.837	<	21.788	<	14.303	<	17.784	<	6.117	<	4.261	<	8.976	<	16.343	<	5.832			<	11.527	<	21.788
Percent Removal: BOD5 - Raw Sewage (mg/L)		98.228		97.136		96.685		97.861		97.706		98.366		96.800		99.162		99.404		99.243		98.708		98.991						99.404
Total Suspended Solids: TSS:																														
Raw: Avg TSS - Raw Sewage (mg/L)		202.667		136.250		108.750		206.500		91.000		273.000		129.000		527.600		684.000		589.000		415.200		485.000				320.664		684.000
Raw: # of samples of TSS - Raw Sewage (mg/L)		6		4		4		4		4		4		4		5		4		4		5		4		52				
Eff: Avg TSS - Final Effluent (mg/L)	<	4.600	<	3.000	<	3.000		4.750	<	5.250	<	11.600	<	6.000	<	3.000	<	6.000	<	18.000	<	3.800	<	3.500			<	6.042		18.000
Eff: # of samples of TSS - Final Effluent (mg/L)		5		4		4		4		4		5		4		5		4		5		5		4		53				
Loading: TSS - Final Effluent (kg/d)	<	12.710	<	8.255	<	9.542		26.658	<	38.129	<	41.479	<	35.569	<	5.735	<	8.521	<	35.124	<	18.265	<	6.803			<	20.566		41.479
Percent Removal: TSS - Raw Sewage (mg/L)		97.730		97.798		97.241		97.700		94.231		95.751		95.349		99.431		99.123		96.944		99.085		99.278						99.431
Total Phosphorus: TP:																													\square	
Raw: Avg TP - Raw Sewage (mg/L)		4.553		2.715		2.418		3.703		2.048		4.365		1.695		7.200		12.015		8.890		5.832		8.013				5.287		12.015
Raw: # of samples of TP - Raw Sewage (mg/L)		6		4		4		4		4		4		4		5		4		4		5		4		52			\square	
Eff: Avg TP - Final Effluent (mg/L)		0.034		0.035		0.053		0.135		0.148		0.093		0.083		0.078		0.108		0.085		0.092		0.068				0.084		0.148
Eff: # of samples of TP - Final Effluent (mg/L)		5		4		4		4		4		4		4		4		4		4		5		4		50			\square	
Loading: TP - Final Effluent (kg/d)		0.094		0.096		0.167		0.758		1.071		0.331		0.489		0.148		0.153		0.166		0.442		0.131				0.337	\square	1.071
Percent Removal: TP - Raw Sewage (mg/L)	\square	99.253	Ц	98.711		97.828	Ц	96.354		92.796		97.881		95.133		98.924	Ц	99.105		99.044		98.422		99.158					\square	99.253
Nitrogen Series:	\square						Ц																						4	
Raw: Avg TKN - Raw Sewage (mg/L)	\square	28.457	Ц	23.072		20.375	Ц	24.425		13.438		26.175		10.558		47.180	Ц	52.000		60.750		30.200		46.525				31.930	\square	60.750
Raw: # of samples of TKN - Raw Sewage (mg/L)		6		4		4		4		4		4		4		5		4		4		5		4		52				
Eff: Avg TAN - Final Effluent (mg/L)	<	0.018	<	0.010	<	0.013	<	0.030	<	0.015	<	0.038	<	0.010	<	0.024	<	0.013	<	0.028	<	0.040		0.123			<	0.030	\square	0.123
Eff: # of samples of TAN - Final Effluent (mg/L)		5		4		4		4		4		5		4		5		4		5		5		4		53			\square	
Loading: TAN - Final Effluent (kg/d)	<	0.050	<	0.028	<	0.040	<	0.168	<	0.109	<	0.136	<	0.059	<	0.046	<	0.018	<	0.055	<	0.192		0.238			<	0.095	\square	0.238
Disinfection:																													\square	
Eff: GMD E. Coli - Final Effluent (cfu/100mL)		2.000	\square	2.000		2.000	\square	2.000		2.000		3.798	Ш	3.130		2.297	\square	2.000		2.378		4.224	Ш	2.000				2.486	⊢	4.224
Eff: # of samples of E. Coli - Final Effluent (cfu/100mL)		5		4		4		4		5		5		4		5		4		5		5		4		54				

Appendix B

Septage Sample Data

Ontario Clean Water Agency Time Series Info Report

From: 01/01/2017 to 31/12/2017

Report extracted 03/29/2018 15:06	
Facility Org Number:	5678
Facility Works Number:	110000873
Facility Name:	MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY
Facility Owner:	Municipality: Municipality of Mississippi Mills
Facility Classification:	Class 3 Wastewater Treatment
Receiver:	Mississippi River
Service Population:	
Total Design Capacity:	14100.0 m3/day

		01/2017	02/2017	(03/2017	04/2017	05/2017	06/2017	07	7/2017	08/2017	09/2017		10/2017	11/2017	12/2017	 Total		Avg	Мах		Min
Septage / Biochemical Oxygen Demand: BOD5 - mg/L																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab	<	19100	9150		14200	11000	12900	17100	1	12300	5170	3870	<	9530	6530	6640			<	19	100	
Mean Lab	<	4043.864	1876.786	2	2503.28	2771.095	2213.739	2354.067	24	23.182	1831.267	1356.857	<	1717.467	1947.571	2574.769	<	< 2	240.009			
Min Lab	<	50	65		77	114	65	73		128	81	118	<	3	62	327					<	3
Septage / Septage Processed - m ³																						
Total IH		323.94	211.34		276.52	308.82	350.76	289.05	3	342.08	321.5	247.73		333.8	230.66	237.91	3474.11					
Max IH		34.36	29.26		39.99	40.55	37.56	29.56	3	30.71	36.8	44.01		41.35	38.29	50.59				50	.59	
Mean IH		10.45	7.548		8.92	10.294	11.315	9.635	1	1.035	10.371	8.258		10.768	7.689	7.675			9.518			
Septage / Septage Received - m ³																						
Total IH		292.93	211.41		252.58	306.22	346.26	289.29	3	851.47	305.17	240.06		323.68	239.45	241	3399.52					
Max IH		34.2	30.22		39.78	39.73	35.79	29.94		31.65	33.89	42.15		42.63	40.37	53.51				53	.51	
Mean IH		9.449	7.55		8.148	10.207	11.17	9.643	1	1.338	9.844	8.002		10.789	7.982	7.774			9.339			
Septage / Total Kjeldahl Nitrogen: TKN - mg/L																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab		1530	1420		1340	1580	1940	1970		1700	1280	1340	<	1520	1430	1670			<	1	970	
Mean Lab		573.15	567.879	4	477.636	622.919	514.409	741.72	58	86.945	651.4	534.071	<	405.575	593.757	798.615	<	<	576.503			
Min Lab		31.2	48.6		17.9	50.8	37.7	39.5		30.3	106	37.4	<	0.1	44.3	124					<	0.1
Septage / Total Phosphorus: TP - mg/L																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab		221	170		309	1180	170	160		779	603	173		158	181	259				1	180	
Mean Lab		67.655	63.689		62.464	165.73	57.776	70.313	12	29.414	122.015	61.613		41.036	75.576	100.623			79.398			
Min Lab		5.87	6.14		4.08	6.29	4.24	4.4		3.95	9.92	5.33		0.05	2.92	8.2						0.05
Septage / Total Solids: TS - mg/L																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab		55000	19000		28000	92800	58200	20500	4	41000	27400	15900		31000	19800	30400				92	300	
Mean Lab		11446.82	6211.429		5946.4	13122.38	7496.087	4658	83	372.727	7714	4967.857		6664	7040	7333.846		6	845.851			
Min Lab		890	1530		1030	760	730	570		490	1220	500		370	420	920						370
Septage / Total Suspended Solids: TSS - mg/L																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab		54600	21500		27900	49900	24000	37400	2	27100	24200	5650		9000	15400	30400				54	500	
Mean Lab		9196.273	4107.071	4	4536.68	7545.667	3107.043	5351.333	43	374.545	5040	1818.286		1424.8	4445.714	5433.846		4	418.712			
Min Lab		76	264		170	104	130	120		60	120	176		3	40	400						3
Septage / pH																						
Count Lab		22	14		25	21	23	15		22	15	14		15	14	13	213					
Max Lab		9.23	9.41		8.93	8.92	8.87	8.96		8.63	8.57	8.72		8.91	8.42	9.2				ę	.41	
Mean Lab	\square	7.718	8.004		7.691	7.572	7.507	7.869	7	7.364	7.6	7.68	LĪ	7.532	7.345	7.733			7.659			
Min Lab		6.13	7.02		6.55	6.1	6.33	7.04		6.07	6.93	6.73		6.01	6.31	6.22						6.01

Appendix C

Biosolids Application Summary

Mississippi Mills - Sites Applied with Biosolids 2017

Date 2017	Farmer/ Landowner	NASM#	Lot	Con	Township	Field #	Application Method	Total Dry Tonnes (t)	Area Spread (ha)
June 12-13	Cochran - Lyle Reid	23008	4	7	Pakenham	1	Incorporated 6hrs	406.12	12.12
Nov 17-20	Cochran - Lyle Reid	23008	4	'	Fakelinani	3W	Incorporated 6hrs	382.25	9.06
							TOTAL	788.37	21.18

52.3 ac

Town of Mississippi Mills Landbank

Farmer	NASM #	Farm Name	Lot	Con	Township	Area (ha)	Expiry Date
Cochran	23090	Home Farm	23	7	Ramsay	39.14	Dec 31 2021
Cochian	23008	Lyle Reid	4	7	Pakenham	20.18	Dec 31 2021
Sunol Farms	23120	19	21	12	Beckwith	52.11	Dec 31 2019
	22416	James	6	11	Ramsay	47.57	Dec 31 2020
					TOTAL	159	

393 ac

	Maximum Acceptable	2017							
Metals	Concentration (mg/kg)	Average							
As	170	2.5							
Cd	34	0.6							
Со	340	2.1							
Cr	2800	22.5							
Cu	1700	435.6							
Hg	11	0.37							
Мо	94	2.9							
Ni	420	13.9							
Pb	1100	17.8							
Se	34	2.8							
Zn	4200	321.8							
	Maximum Acceptable								
E. Coli	Concentration (CFU/g)								
	2,000,000	<568							
Total P (%)		2.54							
Ammonia+Ammoniur	m (ppm)	206							
Nitrate+Nitrites (ppm		392							
TKN (%)	3.05								
Potassium (%)	0.105								
Solids (%)		18.4							

Twelve Month Average: January 2017 - December 2017 Mississippi Mills

Mississippi Mills - Monthly Haulage 2017

Month	dry tonnes (t)	% of Total Haulage
January	0	0.0
February	0	0.0
March	0	0.0
April	0	0.0
Мау	0	0.0
June	406.12	51.5
July	0	0.0
August	0	0.0
September	0	0.0
October	0	0.0
November	382.25	48.5
December	0	0.0
Total:	788.37	100

Appendix D

Calibration Records

MM STP Grinder Heter. Page 1/3

DTM Version: 3.13.00

Flowmeter Verification Certificate Transmitter

Customer	Plant FTT-310
Order code	Tag Name
PROMAG 53 W DN100	1.2931 - 1.2931
Device type	K-Factor
E309B116000	6
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
01/17/2017	14:48
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.53 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.07	1.00.01
Software Version	Software Version
09/2016	09/2016
Last Calibration Date	Last Calibration Date

Inspector's Sign

Operator's Sign

Overall results:

Date

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/-1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

1) Prerequisite is an additional proof of electrode integrity with high voltage test.

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 53 W DN100	K-Factor	1.2931 - 1.2931
Serial number	E309B116000	Zero point	6
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	01/17/2017	Verification time	14:48

Verification Flow end value (100~%): 4633.344 m3/d Flow speed 6.83 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	231.668 m3/d (5%)	1.09 %	0.51 %
		463.335 m3/d (10.0%)	0.79 %	0.04 %
		2316.673 m3/d (50.0%)	0.56 %	-0.06 %
		4633.345 m3/d (100%)	0.53 %	-0.05 %
×.	Current Output 1	4.000 mA (0%)	0.05 mA	-0.006 mA
		4.800 mA (5%)	0.05 mA	-0.006 mA
		5.600 mA (10.0%)	0.05 mA	-0.018 mA
- V.		12.000 mA (50.0%)	0.05 mA	-0.004 mA
		20.000 mA (100%)	0.05 mA	0.002 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	5.000 ms	0.00014.250 ms	7.887 ms
1	Coil Curr. Stability			
	Electrode Integrity	mV	0.0300.001 mV	0.000 mV

Legend of symbols

	×		?	I
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 53 W DN100	K-Factor	1.2931 - 1.2931
Serial number	E309B116000	Zero point	6
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	01/17/2017	Verification time	14:48

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	3270.61 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.004 m3/P	Passive/Negati ve	20.00 ms	

Actual System Ident.

121.0

DTM Version: 3.13.00

MM STP Septage Flow Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT350
Order code	Tag Name
PROMAG 53 P DN100	1.2918 - 1.2918
Device type	K-Factor
E60E6616000	2
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
02/07/2017	10:32
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.07	1.00.01
Software Version	Software Version
09/2016	09/2016
Last Calibration Date	Last Calibration Date

Inspector's Sign 4

Date

Operator's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

1) Prerequisite is an additional proof of electrode integrity with high voltage test.

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT350
Device type	PROMAG 53 P DN100	K-Factor	1.2918 - 1.2918
Serial number	E60E6616000	Zero point	2
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	02/07/2017	Verification time	10:32

Verification Flow end value (100~%): 2714.336 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
\checkmark	Amplifier	135.718 m3/d (5%)	1.50 %	0.58 %
V.		271.435 m3/d (10.0%)	1.00 %	0.58 %
1		1357.169 m3/d (50.0%)	0.60 %	0.07 %
1		2714.337 m3/d (100%)	0.55 %	-0.00 %
4	Current Output 1	4.000 mA (0%)	0.05 mA	-0.018 mA
1		4.800 mA (5%)	0.05 mA	-0.018 mA
×		5.600 mA (10.0%)	0.05 mA	-0.027 mA
1		12.000 mA (50.0%)	0.05 mA	-0.005 mA
4		20.000 mA (100%)	0.05 mA	0.027 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	5.000 ms	0.00014.250 ms	6.252 ms
×	Coil Curr. Stability			
1	Electrode Integrity	mV	0.0300.001 mV	3.272 mV

Legend of symbols

4	X		?	1
Passed	Failed	not tested	not testable	Attention

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT350
Device type	PROMAG 53 P DN100	K-Factor	1.2918 - 1.2918
Serial number	E60E6616000	Zero point	2
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	02/07/2017	Verification time	10:32

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	4320.01 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.008 m3/P	Passive/Positiv e	100.01 ms	

Actual System Ident.

101.0

MM STP Service Wopage 1/3

DTM Version: 3.13.00

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT-1091
Order code	Tag Name
PROMAG 10 P DN150	1.0062 - 1.0062
Device type	K-Factor
E608FD16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/16/2017	10:34
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.07	1.00.01
Software Version	Software Version
09/2016	09/2016
Last Calibration Date	Last Calibration Date

Date

Operator's Sign

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

1) Prerequisite is an additional proof of electrode integrity with high voltage test.

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-1091
Device type	PROMAG 10 P DN150	K-Factor	1.0062 - 1.0062
Serial number	E608FD16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/16/2017	Verification time	10:34

Verification Flow end value (100 %): 70.686 l/s Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
\checkmark	Amplifier	3.534 l/s (5%)	1.60 %	0.03 %
V.		7.069 l/s (10.0%)	1.10 %	0.20 %
		35.343 l/s (50.0%)	0.70 %	0.05 %
V		70.686 l/s (100%)	0.65 %	-0.09 %
1	Current Output 1	4.000 mA (0%)	0.05 mA	0.000 mA
		4.800 mA (5%)	0.05 mA	-0.000 mA
×		5.600 mA (10.0%)	0.05 mA	0.000 mA
×		12.000 mA (50.0%)	0.05 mA	0.001 mA
		20.000 mA (100%)	0.05 mA	0.002 mA
	Pulse Output 1			
······		Start value	Limits range	Measured value
	Test Sensor			
1	Coil Curr. Rise	83.300 ms	20.00083.300 ms	66.555 ms
<	Coil Curr. Stability			

Legend of symbols

\checkmark	X		?	I
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-1091
Device type	PROMAG 10 P DN150	K-Factor	1.0062 - 1.0062
Serial number	E608FD16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/16/2017	Verification time	10:34

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/s	50.00 l/s	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positiv e	100.01 ms	

Actual System Ident.

129.0

MM STP Attenucation Flou Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT-405
Order code	Tag Name
PROMAG 53 P DN200	1.0223 - 1.0223
Device type	K-Factor
E6088316000	11
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
02/07/2017	10:44
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.07	1.00.01
Software Version	Software Version
09/2016	09/2016
Last Calibration Date	Last Calibration Date

Inspector's Sign

Date **Overall results:** **Operator's Sign**

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-405
Device type	PROMAG 53 P DN200	K-Factor	1.0223 - 1.0223
Serial number	E6088316000	Zero point	11
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	02/07/2017	Verification time	10:44

Verification Flow end value (100~%): 125.664 l/s Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
1	Amplifier	6.283 l/s (5%)	1.50 %	0.61 %
1		12.566 l/s (10.0%)	1.00 %	0.14 %
×		62.832 l/s (50.0%)	0.60 %	0.09 %
		125.665 l/s (100%)	0.55 %	-0.00 %
\checkmark	Current Output 1	4.000 mA (0%)	0.05 mA	-0.016 mA
V.		4.800 mA (5%)	0.05 mA	-0.015 mA
×		5.600 mA (10.0%)	0.05 mA	-0.026 mA
×		12.000 mA (50.0%)	0.05 mA	-0.004 mA
		20.000 mA (100%)	0.05 mA	0.022 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	13.300 ms	0.00027.625 ms	18.350 ms
- And a start of the start of t	Coil Curr. Stability			
1	Electrode Integrity	mV	0.0300.001 mV	19.615 mV

	×		?	1
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-405
Device type	PROMAG 53 P DN200	K-Factor	1.0223 - 1.0223
Serial number	E6088316000	Zero point	11
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Verification date	02/07/2017	Verification time	10:44

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/s	150.01 l/s	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	37.854 I/P	Passive/Positiv e	100.01 ms	

Actual System Ident.

MAS AZ Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT-621
Order code	Tag Name
PROMAG 10 P DN150	1.0176 - 1.0176
Device type	K-Factor
E6087E16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/13/2017	14:02
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simul
240223	8
Production number	Product
1.07.07	1.00.0
Software Version	Softwar
09/2016	09/201
Last Calibration Date	Last Ca

Simubox Details	
8784351	
Production number	
1.00.01	
Software Version	
09/2016	
Last Calibration Date	

Date

Operator's Sign

LL Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-621
Device type	PROMAG 10 P DN150	K-Factor	1.0176 - 1.0176
Serial number	E6087E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/13/2017	Verification time	14:02

Verification Flow end value (100~%): 6107.256~m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	305.364 m3/d (5%)	1.60 %	-0.12 %
\checkmark		610.727 m3/d (10.0%)	1.10 %	-0.63 %
		3053.629 m3/d (50.0%)	0.70 %	0.07 %
		6107.257 m3/d (100%)	0.65 %	0.00 %
×	Current Output 1	4.000 mA (0%)	0.05 mA	0.005 mA
×		4.800 mA (5%)	0.05 mA	-0.004 mA
\checkmark		5.600 mA (10.0%)	0.05 mA	-0.005 mA
1		12.000 mA (50.0%)	0.05 mA	-0.008 mA
1		20.000 mA (100%)	0.05 mA	-0.005 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	83.300 ms	20.00083.300 ms	66.581 ms
\checkmark	Coil Curr. Stability			

4	X	linning)	?	1
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer		Plant		
Order code		Tag Name	FIT-621	
Device type	PROMAG 10 P DN150	K-Factor	1.0176 - 1.0176	
Serial number	E6087E16000	Zero point	0	
Software Version Transmitter	V1.03.00	Software Version I/O-Module		
Verification date	01/13/2017	Verification time	14:02	

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	3456.01 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positiv e	100.01 ms	

Actual System Ident.

MM. STP

RAS#3

Page 1/3

DTM Version: 3.13.00

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT-631
Order code	Tag Name
PROMAG 10 P DN150	1.016 - 1.016
Device type	K-Factor
E608FE16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/13/2017	13:53
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	
240223	
Production number	
1.07.07	
Software Version	
09/2016	

Simubox Details	
8784351	
Production number	
1.00.01	
Software Version	
09/2016	
Last Calibration Date	

Inspector's Sign

Date Overall results:

Operator's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-631
Device type	PROMAG 10 P DN150	K-Factor	1.016 - 1.016
Serial number	E608FE16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/13/2017	Verification time	13:53

Verification Flow end value (100~%): 6107.256~m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
1	Amplifier	305.364 m3/d (5%)	1.60 %	0.47 %
×		610.727 m3/d (10.0%)	1.10 %	0.07 %
V.		3053.629 m3/d (50.0%)	0.70 %	0.03 %
		6107.257 m3/d (100%)	0.65 %	-0.00 %
\checkmark	Current Output 1	4.000 mA (0%)	0.05 mA	0.005 mA
		4.800 mA (5%)	0.05 mA	-0.003 mA
×		5.600 mA (10.0%)	0.05 mA	-0.002 mA
		12.000 mA (50.0%)	0.05 mA	-0.006 mA
×		20.000 mA (100%)	0.05 mA	-0.001 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	83.300 ms	20.00083.300 ms	66.738 ms
	Coil Curr. Stability			

\checkmark	X		?	I
Passed	Failed	not tested	not testable	Attention

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-631
Device type	PROMAG 10 P DN150	K-Factor	1.016 - 1.016
Serial number	E608FE16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/13/2017	Verification time	13:53

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	3456.01 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
VOLUME		0.025 m3/P	Passive/Positiv e 100.01 ms		

Actual System Ident.

MM STD Filmte Flow Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
	FIT-750
Order code	Tag Name
PROMAG 10 P DN80	1.1234 - 1.1234
Device type	K-Factor
E6086E16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/16/2017	10:23
Verification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details	
240223	8784351	
Production number	Production number	
1.07.07	1.00.01	
Software Version	Software Version	
09/2016	09/2016	
Last Calibration Date	Last Calibration Date	

Date

Operator's Sign

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

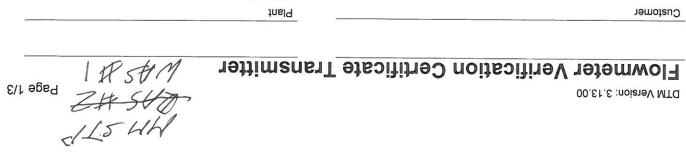
FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-750
Device type	PROMAG 10 P DN80	K-Factor	1.1234 - 1.1234
Serial number	E6086E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/16/2017	Verification time	10:23

Verification Flow end value (100~%): 1737.175 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
1	Amplifier	86.859 m3/d (5%)	1.60 %	0.49 %
1		173.718 m3/d (10.0%)	1.10 %	0.43 %
×		868.589 m3/d (50.0%)	0.70 %	0.12 %
		1737.176 m3/d (100%)	0.65 %	-0.00 %
1	Current Output 1	4.000 mA (0%)	0.05 mA	0.004 mA
× ·		4.800 mA (5%)	0.05 mA	0.002 mA
· ·····		5.600 mA (10.0%)	0.05 mA	0.002 mA
		12.000 mA (50.0%)	0.05 mA	0.003 mA
		20.000 mA (100%)	0.05 mA	0.006 mA
	Pulse Output 1			
		Start value	Limits range	Measured value
	Test Sensor			
\checkmark	Coil Curr. Rise	50.000 ms	13.34050.000 ms	43.854 ms
V	Coil Curr. Stability			

V	X		?	I
Passed	Failed	not tested	not testable	Attention


FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-750
Device type	PROMAG 10 P DN80	K-Factor	1.1234 - 1.1234
Serial number	E6086E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Verification date	01/16/2017	Verification time	10:23

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	4320.01 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.005 m3/P	Passive/Positiv e	100.01 ms	

Actual System Ident.

Comments:		-2.00% ¹ 0%	-1.50%	-0.50%	6 Erro	or 0.50%	1.50%	2.00%		σ	4	ω	2		V. Setting No. (m/sec)	Customer FS:	Cal. FS:			Model#: OCMIII	Project:		Agence
										51.20	43.05	32.98	20.92	0.00	P(psi) (cm)	liter/s	liter/s	<u>12</u> "	31955459	OCMIII	MISSISSIPPI		Ontarienm
		25%			Δ					20	05	86	92	00	Head (m/w.c)		0				MISSISSIPPI MILLS WWTP		Agence Ontarienne Des Eaux
				And Andrewson and Andrews	A CONTRACTOR OF A CONTRACTOR O					21554	16165	10777	5388	0.00	Flow (m^3/D)	Sensor Factors	Range:	Work Order Ref .:	Project Org.:	Make: Type:	Description		
	Output, Dis	5						-	Calibra						CAL. Display Standard Before	tors:				<u>MILL</u> Parshall Flume	METER	Calibration / Inspection C	
	Output, Display (% F.S)	50%			•				Calibration Characteristic						Display Dis After erro		0-21554.57 m^3/d			Flume	FLOW LAGO	on / Insp	
		75					A characteristic de la constant de		cteristic	20.00	16.00	12.00	8.00		Display O/P. Theo error (%) (mAdc)						METER FLOW LAGOON EFFLUENT	ection Check	
		75%					/					-			O/P. Before CAL.(mAdc)		Date:	(Signature:	lechnician:	1		
										19.93	16.29	12.16	7.85		O/P. After CAL.(mAdc)				Ire:				
		100%								-0.44%	1.81%	1.00%	-0.94%	0.00%	O/P Bef. %Err (%F.S)		05/09/2017		X//Car	Tom K.		Carleton Place, ON, K7C 4P3 Tel: 613 257 4990 Fax:613 257 5727	122 Pat
						^o Bef. %Err F.S)	т.S)	O/P Aft. %Err		-0.44%					O/P Aft. %Err (%F.S)			1				Carleton Place, ON, K7C 4P3 3 257 4990 Fax:613 257 5727	122 Patterson Crescent

Verification time	Verification date
13:46	113/2017
Software Version I/O-Module	Software Version Transmitter
	00.60.1V
Zero point	Serial number
0	E6086D16000
K-Factor	Device type
7880.1 - 7880.1	0800 4 01 DAMOA9
Tag Name	Order code
FIT-612	
Plant	Customer

Verification result Transmitter: Passed

Test Sensor	Passed	
Pulse Output 1	beteet toN	0 b
Current Output 1	bassed	Am 70.0
Amplifier	basseq	8asis: 0.65 %
Test item	fluseЯ	stimiJ beilqqA

Simubox Details	FieldCheck Details
8784351	540553
Production number	Production number
10.00.1	70.70.1
Software Version	Software Version
9102/60	09/2016
Last Calibration Date	Last Calibration Date

Inspector's Sign

Operator's Sign

<u>Overall results:</u> Date

(1 or the original calibration. 1) within +-- 1% The achieved test results show that the instrumment is completely functional, and the measuring results lie

The calibration of the Fieldcheck test system is fully traceable to national standards.

Page 2/3

FieldCheck - Result Tab Transmitter

Verification date	01/13/2017	Verification time	13:45
Software Version Transmitter	00.E0.FV	Software Version I/O-Module	
Serial number	E6086D16000	Zero point	0
Device type	PROMAG 10 P DN80	K-Factor	7550.1 - 7550.1
Order code		amsN gsT	FIT-612
Customer		Plant	

s/m 00.4 beeqs wol7 Verification Flow end value (100 %): 1737.175 m3/d

Deviation	Limit Value	Isngi2 .lumi2	məti teəT	belis / besse
			Test Transmitter	
% 89.0	% 09'1	(%5) p/cm 658.98	Amplifier	
% 91.0-	% 01.1	(%0.01) b/Em 817.ET1		
% 90'0	% 02.0	(%0.0č) b\£m 68č.888		×
% 00'0	% 99.0	(%001) b/Em 371.7E71		~
Am £00.0-	Am 20.0	(%0) Am 000.4	Current Output 1	<u>_</u>
Am 1 00.0-	Am 20.0	(%č) Am 008.4		A
Am 1 00.0-	Am 20.0	(%0.01) Am 008.8		A
Am 100.0-	Am 20.0	(%0.0č) Am 000.St		A
Am 400.0	Am 20.0	(%001) Am 000.02		A
			Fulse Output 1	
Measured value	Limits range	Start value		
			Test Sensor	
em 182.24	13.34050.000 13.340	sm 000.0ð	Coil Curr. Rise	<u>_</u>
			Coil Curr. Stability	~

noitnettA	eldisteet ton	bətsət ton	bəlisT	Passed
i	Ś		X	A

Page 3/3

FieldCheck: Parameters Transmitter

Verification date	01/13/2017	Verification time	13:46
Software Version Transmitter	00.50.1V	Software Version I/O-Module	
Serial number	E6086D16000	Zero point	0
Device type	PROMAG 10 P DN80	K-Factor	7550.1 - 7550.1
Order code		amsN gsT	FIT-612
Customer		Plant	

Am 02 sulsV	Am ⁴ _0 sulsV	Current Range	ngiseA	Curent Output
b\Em 10.488	b\£m 0.0	vitos Am 02-4	ΕΓΟΜ ΛΟΓΩΜΕ	Terminal 26/27
Pulse width	lsngis tuqtuO	Pulse Value	ngissA	Pulse Output
sm 10.001	vitico9\evicese9 e	9\Em 200.0	ΕΓΟΜ ΛΟΓΩΜΕ	Terminal 24/25

Actual System Ident.

C# SHM CLS 44

Page 1/3

DTM Version: 3.13.00

Flowmeter Verification Certificate Transmitter

Verification date	Verification time
2102/91/10	00:01
Software Version Transmitter	Software Version I/O-Module
V1.03.00	
Serial number	Zero point
E608FC16000	0
Device type	K-Factor
0800 4 01 DAMOA9	8820.1 - 8820.1
Order code	Tag Name
	FIT-622
Customer	Plant

Verification result Transmitter: Passed

Test Sensor	bassed	
Pulse Output 1	Not tested	0 Ь
Current Output 1	Passed	Am 20.0
Amplifier	Passed	% 80.0 :siss8
Test item	Result	stimid beilqqA

Last Calibration Date	Last Calibration Date
91/02/60	9102/60
Software Version	Coffware Version
70.70.1	r0.00.r
Production number	Production number
540223	8784351
FieldCheck Details	Simubox Details

within +/- 1% of the original ca	(† noiterdile	2
The achieved test results show	w that the instrumment is completely functional	l, and the measuring results lie
<u>Overall results:</u>		
Date	Operator's Sign	Inspector's Sign

within +/- 1% of the original calibration. 1) The calibration of the original calibration.

The calibration of the Fieldcheck test system is fully traceable to national standards.

FieldCheck - Result Tab Transmitter

Verification date	2102/91/10	Verification time	00:01
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Serial number	E608FC16000	Zero point	0
Device type	PROMAG 10 P DN80	K-Factor	1.0288 - 1.0288
Order code		amsN gsT	FIT-622
Customer		Plant	

Verification Flow end value (100 %): 1737.175 m3/d Flow speed 4.00 m/s

Deviation	bulsV îimi∆	lsngið .lumið	məfi teəT	bəlis7 \ bəzzs
			Test Transmitter	
% 19.0	% 09.1	(%5) p/Em 658.88	Amplifier	1
% 90'0	% 01.1	(%0.01) b\Em 817.ET1		A
% 80.0	% 02.0	(%0.0č) b\£m 68č.888		×
% 10.0-	% 99.0	(%001) b/Em 871.7571		A
Am 800.0	Am 20.0	(%0) Am 000.4	Current Output 1	A
Am £00.0	Am 20.0	(%č) Am 008.4		
Am 400.0	Am 20.0	(%0.01) Am 008.8		and the
Am 400.0	Am 20.0	(%0.0č) Am 000.St		A
Am 900.0	Am 20.0	(%001) Am 000.0S		~
			F tuqtuO seluq	-
Measured value	Limits range	Start value		
	13.34050.000		Test Sensor	1
sm 321.6 1	SW	sm 000.0 2	Coil Curr. Rise	A
			Coil Curr. Stability	A

noitnettA	eldsteet ton	not tested	Failed	passed
i	2		×	A

Page 3/3

FieldCheck: Parameters Transmitter

Verification date	01/16/2017	Verification time	00:01
Software Version Transmitter	00.E0.FV	Software Version I/O-Module	
Serial number	E608FC16000	Zero point	0
Device type	08ND 9 01 DAMOA9	K-Factor	8820.1 - 8820.1
Order code		amsN gsT	FIT-622
Customer		Plant	

Am 02 sulsV	Am ⁴ _0 sulsV	Current Range	npiseA	Curent Output
b\Em 10.438	b\&m 0.0	vitos Am 02-4	ΕΓΟΜ ΛΟΓΩΜΕ	72/82 IsnimaT
Pulse width	lsngis tuqtuO	Pulse Value	ngissA	Pulse Output
sm 10.001	vitiso9\Positiv e	9\Sm 300.0	ΕΓΟΜ ΛΟΓΛΜΕ	Terminal 24/25

Actual System Ident.

S/L = Bage 1/3 d1544

Flowmeter Verification Certificate Transmitter

Verification time	Verification date
01:01	2102/91/10
Software Version I/O-Module	Software Version Transmitter
	00.E0.hV
Zero point	Serial number
0	E6088416000
K-Factor	Device type
930.1 - 330.1	08ND 9 01 DAMOA9
emsN gaT	Order code
FIT-632	
Plant	Customer

Verification result Transmitter: Passed

Test Sensor	bassed	
Pulse Output 1	beteet toN	d 0
Current Output 1	Passed	Am 20.0
Amplifier	bessed	% 80.0 :siss8
məti teəT	Яesult	stimid beilqqA

1.07.07	۲۰۵۵٫۵۱
Production number	۲.۵۵٫۵۱
FieldCheck Details	8784351

al, and the measuring results lie	w that the instrumment is completely function	The achieved test results sho
		Overall results:
Inspector's Sign	Operator's Sign	Date

VI . NOUSTOILES ISANDIO SAN TO %1 -1+ MINIW

The calibration of the Fieldcheck test system is fully traceable to national standards.

Page 2/3

FieldCheck - Result Tab Transmitter

Verification date	21/16/2017	Verification time	01:01
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Serial number	E6088416000	Zero point	0
Device type	08ND 9 01 DAMOR9	K-Factor	880.1 - 880.1
Order code		amsN gsT	FIT-632
Customer		Plant	

Verification Flow end value (100 %): 1737.175 m3/d Flow speed 4.00 m/s

Deviation	eulsV îimiJ	Isngi2 .lumi2	məti teəT	bəlis7 \ bəsss ^c
			Test Transmitter	
% 92.0	% 09.1	(%č) b/cm 6č8.88	Amplifier	A
% 90'0	% 01.1	(%0.01) b/Em 817.ET1		^
% 90'0	% 02.0	(%0.0č) b\£m 68č.888		×
% 00.0-	% 99.0	(%001) b/Em 871.7571		~
Am 100.0	Am 20.0	(%0) Am 000.4	Current Output 1	A
Am 100.0	Am 20.0	(%č) Am 008.4		À
Am 100.0	Am 20.0	(%0.01) Am 008.8		
Am 100.0	Am 20.0	(%0.0č) Am 000.St		A
Am 200.0	Am 20.0	(%001) Am 000.02		A
			r tuqtuO əslu9	-
Measured value	Limits range	Start value		
			Test Sensor	
sm 705.64	13'340''20'000	sm 000.0č	Coil Curr. Rise	×
			Coil Curr. Stability	الملحمي

Legend of symbols

noitnettA	eldsteet ton	beited ton	bəlis	bassed
i	Ś		X	A

Page 3/3

FieldCheck: Parameters Transmitter

Verification date	21/16/2017	Verification time	01:01
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Serial number	E6088416000	Zero point	0
Device type	08ND 9 01 DAMOR9	K-Factor	330.1 - 330.1
Order code	(()	amsN gsT	FIT-632
Customer		Plant	

Am 02 sulsV	Am ¹ _0 sulsV	Current Range	ngiseA	Curent Output
b\Em f0.438	b\£m 0.0	vitos Am 02- 1	ΕΓΟΜ ΛΟΓΛΜΕ	Terminal 26/27
 Pulse width	lsngis tuqtuO	Pulse Value	ngiseA	Pulse Output
20.001 sm	vijiso9\evisss9 e	9\Em 800.0	ΕΓΟΜ ΛΟΓΩΜΕ	Terminal 24/25

Actual System Ident.

•

Page 1/3 HES HH

Flowmeter Verification Certificate Transmitter

Verification time	Verification date
13:36	7102/21/10
Software Version I/O-Module	Software Version Transmitter
	V1.03.00
Zero point	Serial number
0	E6085316000
K-Factor	Device type
1.0042 - 1.0042	PROMAG 10 P DN150
emsN gsT	Order code
FIT-611	
Plant	Customer

Verification result Transmitter: Passed

Test Sensor	bassed	
Pulse Output 1	beteet toN	0 b
Current Output 1	Passed	Am 70.0
Amplifier	passed	833:0.65 %
Test item	JluseR	stimiJ bəilqqA

FieldCheck Details	slisted xodumi2	
Test Sensor	besseq	
Pulse Output 1	Not tested	d 0
	Passed	Am 20.0

Last Calibration Date	
9102/60	
Software Version	
10.00.1	
Production number	
8784351	
Simubox Details	

Inspector's Sign

Operator's Sign

Overall results:

Last Calibration Date

Production number 540553

9102/60 Software Version 70.70.1

Date

within +/- 1% of the original calibration. 1) The achieved test results show that the instrumment is completely functional, and the measuring results lie

The calibration of the Fieldcheck test system is fully traceable to national standards.

Page 2/3

FieldCheck - Result Tab Transmitter

Verification date	01/13/2017	Verification time	13:36
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Serial number	E6085316000	Zero point	0
Device type	PROMAG 10 P DN150	K-Factor	1.0042 - 1.0042
Order code		SmeN gsT	FIT-611
Customer		Plant	

Verification Flow end value (100 %): 6107.256 m3/d Flow speed 4.00 m/s

Deviation	bulsV timid	lsngið "lumið	məfi teəT	belis7 / besss
			Test Transmitter	
1.24 %	% 09.1	305.364 m3/d (5%)	Amplifier	<u> </u>
0.20 %	% 01.1	(%0.01) b\Em 727.018		×
% 90.0-	% 02.0	(%0.0č) b/Em 928.620E		A
% 90'0-	% 99.0	(%001) b/Em 782.7018		A
Am 100.0-	Am 20.0	(%0) Am 000.4	Current Output 1	A
Am 000.0-	Am 20.0	(%č) Am 008.4		A
Am 000.0	Am 20.0	(%0.01) Am 008.8		A
Am e00.0	Am 20.0	(%0.0č) Am 000.St		A
Am 420.0	Am 20.0	(%001) Am 000.02		~
			r tuqtuO eslu¶	-
Measured value	Limits range	Start value		
	20.000.83.300		Test Sensor	<i>F</i>
em 289.99	sw	sm 005.58	Coil Curr. Rise	A
			Coil Curr. Stability	A

Attention	eldsteet ton	beteet ton	Failed	Passed
i	5		X	A

Page 3/3

FieldCheck: Parameters Transmitter

Verification date	01/13/2017	Verification time	13:36
Software Version Transmitter	00.50.1V	Software Version I/O-Module	
Serial number	E6085316000	Zero point	0
Device type	PROMAG 10 P DN150	K-Factor	1.0042 - 1.0042
Order code		emsN gsT	FIT-611
Customer		Plant	

Am 02 sulsV	Am ¹ _0 sulsV	Current Range	npissA	Curent Output
3456.01 3456.01	b\£m 0.0	4-20 mA activ	ΕΓΟΜ ΛΟΓΩΜΕ	Terminal 26/27
 Pulse width	lsngis tuqtuO	Pulse Value	ngissA	Pulse Output
sm 10.001	vitiso9\evisss9 e	9\Sm 820.0	ΕΓΟΜ ΛΟΓΩΜΕ	Terminal 24/25

•

Actual System Ident.