# Mississippi Mills Drinking Water System

Waterworks # 220001290 System Category – Large Municipal Residential

## **Annual Water Report**

Prepared For: Municipality of Mississippi Mills

Reporting Period of January 1st – December 31st 2021

Issued: February 25, 2022

Revision: 0

Operating Authority:



This report has been prepared to satisfy the annual reporting requirements in O.Reg 170/03 Section 11 and Schedule 22

## **Table of Contents**

| Annual Water Report                                 | 1  |
|-----------------------------------------------------|----|
| Report Availability                                 | 1  |
| Compliance Report Card                              | 1  |
| System Process Description                          | 1  |
| Treatment Chemicals used during the reporting year: | 2  |
| Summary of Non-Compliance                           | 2  |
| Adverse Water Quality Incidents                     | 2  |
| Non-Compliance                                      | 2  |
| Non-Compliance Identified in a Ministry Inspection: | 3  |
| Flows                                               | 4  |
| Raw Water Flows                                     | 4  |
| Well 3                                              | 4  |
| Well 5                                              | 5  |
| Well 6                                              | 6  |
| Well 7                                              | 7  |
| Well 8                                              | 8  |
| System Water Flows                                  | 9  |
| Monthly Flows                                       | 9  |
| Annual Total Flow Comparison                        | 9  |
| Regulatory Sample Results Summary                   | 10 |
| Microbiological Testing                             | 10 |
| Operational Testing                                 | 10 |
| Inorganic Parameters                                | 10 |
| Schedule 15 Sampling:                               | 12 |
| Organic Parameters                                  | 13 |
| Additional Legislated Samples                       | 17 |
| Major Maintenance Summary                           | 18 |
| WTRS Data and Submission Confirmation               | 20 |

### **Report Availability**

This system does <u>not</u> serve more than 10,000 residence and the annual reports will be available to users at the Municipality of Mississippi Mills Office. Notification will be at the Municipal Office and copies provided free of charge if requested. The Municipality of Mississippi Mills is located at 3131 Old Perth Rd., Almonte, Ontario, KOA 1AO. View the Municipalities website at www.mississippimills.ca

There are no additional drinking water systems that receive drinking water from this system.

## **Compliance Report Card**

| Compliance Event                                                | # of Events                                                                                                                 |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Ministry of Environment Inspections                             | OCWA/Mississippi Mills Distribution – September 17 2021<br>100%                                                             |
| Municipal Drinking Water Licence<br>Drinking Water Works Permit | Renewal of Licences completed in 2021<br>New Expiry Date 2026-11-25                                                         |
| Ministry of Labour Inspections                                  | No Inspections for the reporting period                                                                                     |
| QEMS External Audit                                             | OCWA: One (1) External On-Site Audit completed  Municipality of Mississippi Mills: One (1) External On-Site Audit completed |
| AWQl's/BWA                                                      | No AWQI's for the reporting period                                                                                          |
| Non-Compliance                                                  | No Non-Compliance's for the reporting period                                                                                |
| Spills                                                          | There were no Spills during the reporting period.                                                                           |

## **System Process Description**

The Mississippi Mills Drinking Water System consists of 5 drilled wells located throughout the Ward of Almonte. The system supplies water to only the Ward of Almonte and is owned by The Corporation of the Municipality of Mississippi Mills. The Ontario Clean Water Agency is the Operating Authority.

Well 3 is located in the eastern portion of the Town, approximately 60 m north of Ottawa Street and Harold Street. Well 3 is contained in its own brick construction pump house and is equipped with a submersible turbine pump rated at a capacity of 9.6 L/s at 70.7m TDH. Disinfection is achieved through injection of sodium hypochlorite into the feeder main prior to the treated water being discharged into a chlorine contact tank.

Well 5 is located along Almonte Street (County Road 16) near the south west end of Town. Well 5 is contained in its own brick construction pump house and is equipped with a submersible vertical pump rated at a capacity of 7.7 L/s at 120.18m TDH. A VFD was also installed to assist in flow control, reduce water pressure and electrical demand. Disinfection is achieved through injection of sodium hypochlorite into the feeder main prior to the treated water being discharged into a chlorine contact tank.

Well 6 is located in Gemmill's Park in the south end of Town, immediately east of Highway 29. Well 6 is contained in its own brick construction pump house and is equipped with a turbine pump rated at a capacity of 22.7 L/s at 101.2m TDH. A VFD assists with flow control, water pressure and electrical demand. Disinfection is achieved through injection of sodium hypochlorite into the feeder main prior to the treated water being discharged into a chlorine contact tank.

Wells 7 and 8 are located within a single pump house near the northeast edge of Town, along the north side of Paterson Street. Well 7 and 8 are enclosed within a single brick and aluminum clad vented watertight pump house. Each well is equipped with a vertical turbine pump rated at a capacity of 44.8 L/s at 69.0m TDH. Both pumps have a VFD installed to assist in flow control, water pressure and electrical demand. The pumps are located directly on top of the well casings. Disinfection is achieved through injection of liquid sodium hypochlorite into the feeder main of each well, prior to the treated water being discharged into a single chlorine contact chamber.

<u>Treatment Chemicals used during the reporting year:</u>

| Chemical Name            | Use          | Supplier |
|--------------------------|--------------|----------|
| 12 % Sodium Hypochlorite | Disinfection | Brenntag |

## **Summary of Non-Compliance**

#### **Adverse Water Quality Incidents**

| Date | AWQI#                                 | Location | Problem | Details | Legislation | Corrective Action<br>Taken |
|------|---------------------------------------|----------|---------|---------|-------------|----------------------------|
|      | No AWQI's during the reporting period |          |         |         |             |                            |

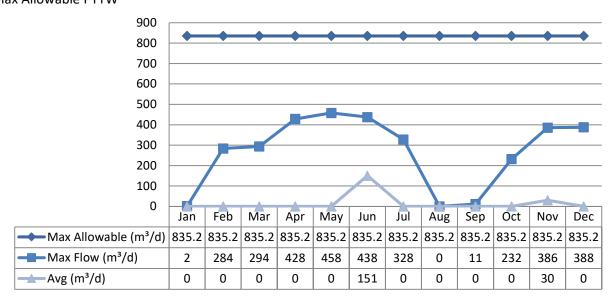
#### **Non-Compliance**

| Legislation | requirement(s)<br>system failed to<br>meet      | duration of the<br>failure<br>(i.e. date(s)) | Corrective Action | Status |  |  |
|-------------|-------------------------------------------------|----------------------------------------------|-------------------|--------|--|--|
|             | No Non-Compliance's during the reporting period |                                              |                   |        |  |  |

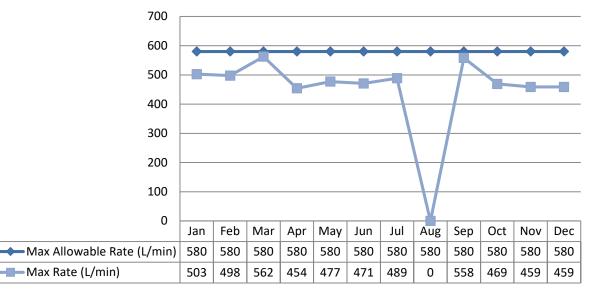
### **Non-Compliance Identified in a Ministry Inspection:**

| Legislation      | requirement(s) system failed to meet                                                                                                                                                                                                                                                                                                                                                            | duration<br>of the<br>failure<br>(i.e.<br>date(s)) | Corrective Action                                                                                                                                               | Status |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Reg<br>170/03    | HAA samples must be taken from a point in the drinking water system's distribution system, or plumbing that is connected to the drinking water system, that is likely to have an elevated potential for the formation of HAAs.                                                                                                                                                                  | 2021                                               | HAAs form close to the point of treatment and sampling will take place at a distribution point close to the treatment plant.                                    | Closed |
| Reg. O<br>170/03 | THM samples must be taken from a point in the drinking water system's distribution system, or plumbing that is connected to the drinking water system, that is likely to have an elevated potential for the formation of THMs.                                                                                                                                                                  | 2021                                               | THMs usually form from a point furthest from the treatment plant and sampling will take place at the distribution point furthest away from the treatment plant. | Closed |
| Reg. O<br>170/03 | Distribution logbooks contained numerous entries that had been written over, scribbled out or left difficult to decipher. It is highly recommended that original records completed are maintained so as to be legible and that subsequent corrections (or modifications) be completed with a strike out, initial and new record. This allows for demonstration and verification of all records. | 2021                                               | Internal logbook<br>training was completed                                                                                                                      | Closed |
| Reg.<br>O/170/03 | Treatment logbooks indicated that the operators ensured that any activities that occurred in the system were documented. However, numerous days contained entries that were made by an Operator In Training (OIT) that did not contain a reference that the Operator In Charge (OIC) was consulted prior to the operational changes being completed.                                            | 2021                                               | Training on OIT activites was completed.                                                                                                                        | Closed |

#### **Flows**

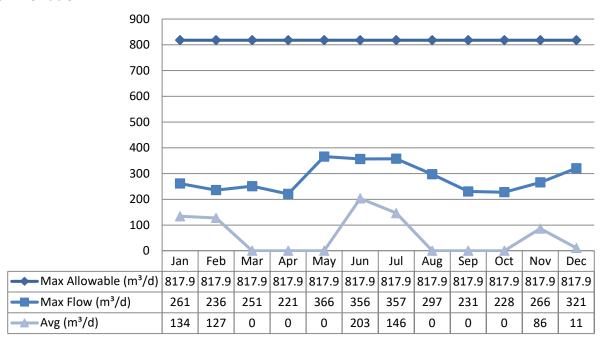

The Mississippi Mills Drinking Water System is operating on average under half the rated capacity.

#### **Raw Water Flows**

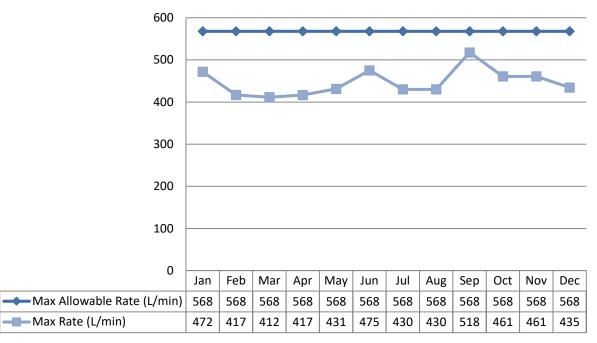

The Raw Water flows are regulated under the Permit to Take Water. 2021 Raw Flow Data was submitted to the Ministry electronically under permit #0568-9LUL2N. The confirmation is attached in Appendix A.

Well 3

Total Monthly Flows (m³/d)
Max Allowable PTTW

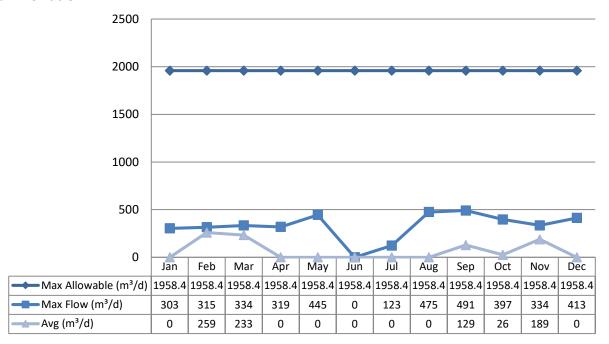



#### Monthly Rated Flows (L/min)

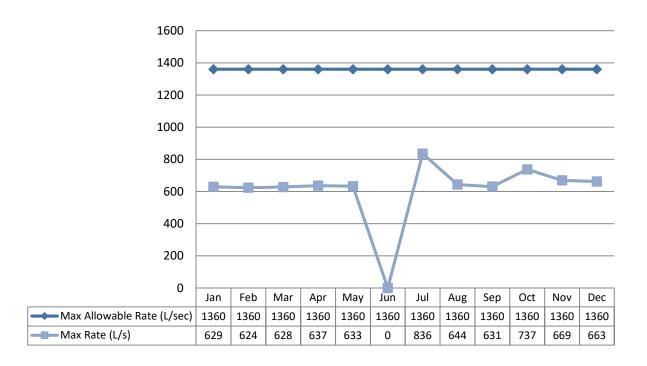



Well 5

<u>Total Monthly Flows (m³/d)</u>
Max Allowable PTTW

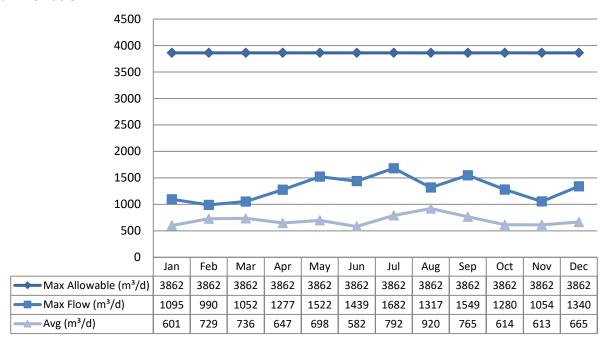



## Monthly Rated Flows (L/min)

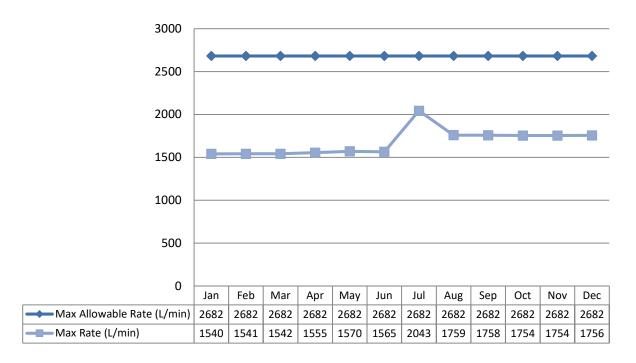



Well 6

Total Monthly Flows (m³/d)
Max Allowable PTTW



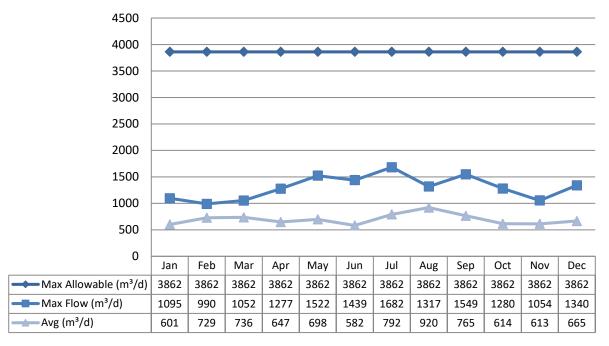

# Monthly Rated Flows (L/s) Max allowable rate – PTTW



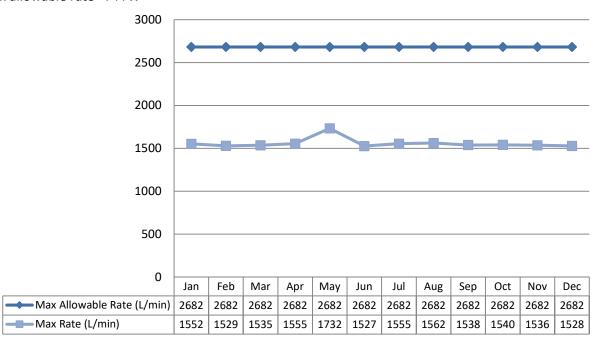

Well 7

<u>Total Monthly Flows (m³/d)</u>
Max Allowable PTTW




## Monthly Rated Flows (L/min)



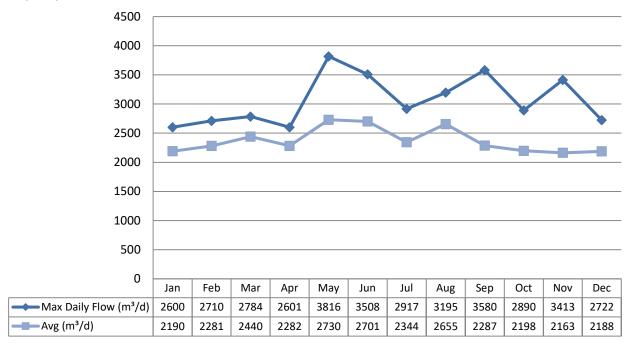

Well 8

<u>Total Monthly Flows (m³/d)</u>

Max Allowable PTTW

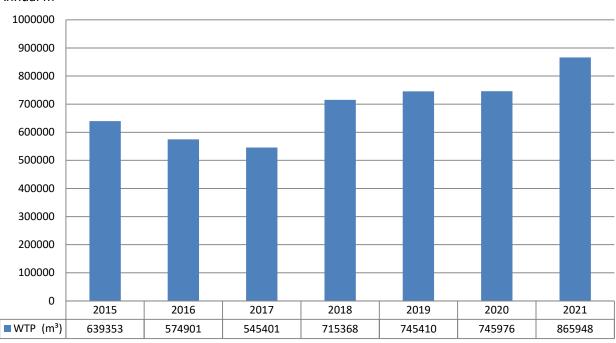


#### Monthly Rated Flows (L/min)




#### **System Water Flows**

The System Water flows are regulated under the Municipal Drinking Water Licence.


#### **Monthly Flows**

Rated Capacity - MDWL



#### Annual Total Flow Comparison

#### Total Annual m<sup>3</sup>



## **Regulatory Sample Results Summary**

#### **Microbiological Testing**

|                                  | No. of<br>Samples<br>Collected | Range o<br>Resi |     | Range of Total<br>Coliform Results |     | No. of<br>HPC<br>Samples<br>Collected | _   | of HPC<br>ults |
|----------------------------------|--------------------------------|-----------------|-----|------------------------------------|-----|---------------------------------------|-----|----------------|
|                                  |                                | Min             | Max | Min                                | Max |                                       | Min | Max            |
| MMills DWS RW Well 3             | 40                             | 0               | 0   | 0                                  | 0   |                                       |     |                |
| MMills DWS RW Well 5             | 51                             | 0               | 0   | 0                                  | 0   |                                       |     |                |
| MMills DWS RW Well 6             | 45                             | 0               | 0   | 0                                  | 20  |                                       |     |                |
| MMills DWS RW Well 7             | 52                             | 0               | 0   | 0                                  | 0   |                                       |     |                |
| MMills DWS RW Well 8             | 52                             | 0               | 0   | 0                                  | 1   |                                       |     |                |
| MMills DWS TW Well 3             | 40                             | 0               | 0   | 0                                  | 0   | 40                                    | 2   | 12             |
| MMills DWS TW Well 5             | 52                             | 0               | 0   | 0                                  | 0   | 52                                    | 2   | 8              |
| MMills DWS TW Well 6             | 44                             | 0               | 0   | 0                                  | 0   | 44                                    | 2   | 2              |
| MMills DWS TW Wells 7&8 combined | 52                             | 0               | 0   | 0                                  | 0   | 52                                    | 2   | 2              |
| Distribution                     | 208                            | 0               | 0   | 0                                  | 0   | 208                                   | 2   | 90             |

<sup>\*</sup> Number of Samples collected varies due to the individual well being Out of Service for Maintenance

#### **Operational Testing**

|                                                         | No. of Samples | Range o | f Results |
|---------------------------------------------------------|----------------|---------|-----------|
|                                                         | Collected      | Minimum | Maximum   |
| Turbidity, On-Line (NTU) - RW6                          | 8760           | 0.03    | 2.83      |
| Turbidity, On-Line (NTU) - RW7                          | 8760           | 0       | 2.0       |
| Turbidity, On-Line (NTU) - RW8                          | 8760           | 0       | 2.0       |
| Free Chlorine Residual, On-Line (mg/L) - TW3            | 8760           | 0.37    | 1.98      |
| Free Chlorine Residual, In-House (mg/L) – TW3           | 147            | 0.54    | 1.65      |
| Free Chlorine Residual, On-Line (mg/L) - TW5            | 8760           | 0.63    | 2.0       |
| Free Chlorine Residual, In-House (mg/L) – TW5           | 148            | 0.73    | 1.61      |
| Free Chlorine Residual, On-Line (mg/L) - TW6            | 8760           | 0.12    | 2.0       |
| Free Chlorine Residual, In-House (mg/L) – TW6           | 147            | 0.52    | 1.76      |
| Free Chlorine Residual, On-Line (mg/L) - TW7/8          | 8760           | 0.0     | 1.73      |
| Free Chlorine Residual, In-House (mg/L) – TW7/8         | 148            | 0.69    | 1.51      |
| Free Chlorine Residual, On-Line (mg/L) - DW             | 8760           | 0.412   | 4.46      |
| Free Chlorine Residual, DW Field (mg/L) Lab Upload - DW | 209            | 0.67    | 1.76      |

NOTE: spikes recorded by on-line instrumentation were a result of air bubbles and various maintenance/calibration activities. All spikes are reviewed for compliance with O.Reg 170/03

#### **Inorganic Parameters**

These parameters are tested as a requirement under O.Reg 170/03. Sodium and Fluoride are required to be tested every 5 years. Nitrate and Nitrite are tested quarterly and the metals are tested every 36 months as required under O.Reg 170/03. In the event any of the parameters exceed half of the maximum allowable concentration the parameter is required to be sampled quarterly.

- MAC = Maximum Allowable Concentration as per O.Reg 169/03
- BDL = Below the laboratory detection level

|                             | Sample Date  |                                                              |        | No. of Exceedances |         |  |
|-----------------------------|--------------|--------------------------------------------------------------|--------|--------------------|---------|--|
|                             | (yyyy/mm/dd) | Sample Result                                                | MAC    | MAC                | 1/2 MAC |  |
| Treated Water               |              |                                                              |        |                    |         |  |
| Antimony: Sb (ug/L) - TW3   | 2019/09/09   | <mdl 0.1<="" td=""><td>6.0</td><td>No</td><td>No</td></mdl>  | 6.0    | No                 | No      |  |
| Antimony: Sb (ug/L) - TW5   | 2019/09/09   | <mdl 0.1<="" td=""><td>6.0</td><td>No</td><td>No</td></mdl>  | 6.0    | No                 | No      |  |
| Antimony: Sb (ug/L) - TW6   | 2019/09/09   | <mdl 0.1<="" td=""><td>6.0</td><td>No</td><td>No</td></mdl>  | 6.0    | No                 | No      |  |
| Antimony: Sb (ug/L) - TW7/8 | 2019/09/09   | <mdl 0.1<="" td=""><td>6.0</td><td>No</td><td>No</td></mdl>  | 6.0    | No                 | No      |  |
| Arsenic: As (ug/L) - TW3    | 2019/09/09   | <mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl> | 10.0   | No                 | No      |  |
| Arsenic: As (ug/L) - TW5    | 2019/09/09   | <mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl> | 10.0   | No                 | No      |  |
| Arsenic: As (ug/L) - TW6    | 2019/09/09   | <mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl> | 10.0   | No                 | No      |  |
| Arsenic: As (ug/L) - TW7/8  | 2019/09/09   | <mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl> | 10.0   | No                 | No      |  |
| Barium: Ba (ug/L) - TW3     | 2019/09/09   | 120.0                                                        | 1000.0 | No                 | No      |  |
| Barium: Ba (ug/L) - TW5     | 2019/09/09   | 154.0                                                        | 1000.0 | No                 | No      |  |
| Barium: Ba (ug/L) - TW6     | 2019/09/09   | 92.0                                                         | 1000.0 | No                 | No      |  |
| Barium: Ba (ug/L) - TW7/8   | 2019/09/09   | 152.0                                                        | 1000.0 | No                 | No      |  |
| Boron: B (ug/L) - TW3       | 2019/09/09   | 247.0                                                        | 5000.0 | No                 | No      |  |
| Boron: B (ug/L) - TW5       | 2019/09/09   | 50.0                                                         | 5000.0 | No                 | No      |  |
| Boron: B (ug/L) - TW6       | 2019/09/09   | 284.0                                                        | 5000.0 | No                 | No      |  |
| Boron: B (ug/L) - TW7/8     | 2019/09/09   | 183.0                                                        | 5000.0 | No                 | No      |  |
| Cadmium: Cd (ug/L) - TW3    | 2019/09/09   | <mdl 0.02<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl> | 5.0    | No                 | No      |  |
| Cadmium: Cd (ug/L) - TW5    | 2019/09/09   | <mdl 0.02<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl> | 5.0    | No                 | No      |  |
| Cadmium: Cd (ug/L) - TW6    | 2019/09/09   | <mdl 0.02<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl> | 5.0    | No                 | No      |  |
| Cadmium: Cd (ug/L) - TW7/8  | 2019/09/09   | <mdl 0.02<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl> | 5.0    | No                 | No      |  |
| Chromium: Cr (ug/L) - TW3   | 2019/09/09   | <mdl 2.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Chromium: Cr (ug/L) - TW5   | 2019/09/09   | <mdl 2.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Chromium: Cr (ug/L) - TW6   | 2019/09/09   | <mdl 2.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Chromium: Cr (ug/L) - TW7/8 | 2019/09/09   | <mdl 2.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Mercury: Hg (ug/L) - TW3    | 2019/09/09   | <mdl 0.02<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl> | 1.0    | No                 | No      |  |
| Mercury: Hg (ug/L) - TW5    | 2019/09/09   | <mdl 0.02<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl> | 1.0    | No                 | No      |  |
| Mercury: Hg (ug/L) - TW6    | 2019/09/09   | <mdl 0.02<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl> | 1.0    | No                 | No      |  |
| Mercury: Hg (ug/L) - TW7/8  | 2019/09/09   | <mdl 0.02<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl> | 1.0    | No                 | No      |  |
| Selenium: Se (ug/L) - TW3   | 2019/09/09   | <mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Selenium: Se (ug/L) - TW5   | 2019/09/09   | <mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Selenium: Se (ug/L) - TW6   | 2019/09/09   | <mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Selenium: Se (ug/L) - TW7/8 | 2019/09/09   | <mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl> | 50.0   | No                 | No      |  |
| Uranium: U (ug/L) - TW3     | 2019/09/09   | 0.65                                                         | 20.0   | No                 | No      |  |
| Uranium: U (ug/L) - TW5     | 2019/09/09   | 0.78                                                         | 20.0   | No                 | No      |  |
| Uranium: U (ug/L) - TW6     | 2019/09/09   | 0.89                                                         | 20.0   | No                 | No      |  |
| Uranium: U (ug/L) - TW7/8   | 2019/09/09   | 1.05                                                         | 20.0   | No                 | No      |  |
| Additional Inorganics       |              |                                                              |        |                    |         |  |
| Fluoride (mg/L) - TW3       | 2019/02/05   | 0.1                                                          | 1.5    | No                 | No      |  |
| Fluoride (mg/L) - TW5       | 2019/02/05   | <mdl 0.1<="" td=""><td>1.5</td><td>No</td><td>No</td></mdl>  | 1.5    | No                 | No      |  |
| Fluoride (mg/L) - TW6       | 2019/02/05   | 0.3                                                          | 1.5    | No                 | No      |  |
| Fluoride (mg/L) - TW7/8     | 2019/02/05   | 0.2                                                          | 1.5    | No                 | No      |  |
| Nitrite (mg/L) - TW3        | 2021/02/09   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0    | No                 | No      |  |
| Nitrite (mg/L) - TW3        | 2021/05/11   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0    | No                 | No      |  |
| Nitrite (mg/L) - TW3        | 2021/11/08   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0    | No                 | No      |  |
| Nitrite (mg/L) - TW5        | 2021/02/09   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0    | No                 | No      |  |

|                           | Sample Date  | Canada Bassila                                               | 1446 | No. of Ex | kceedances |
|---------------------------|--------------|--------------------------------------------------------------|------|-----------|------------|
|                           | (yyyy/mm/dd) | Sample Result                                                | MAC  | MAC       | 1/2 MAC    |
| Nitrite (mg/L) - TW5      | 2021/05/11   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW5      | 2021/08/10   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW5      | 2021/11/16   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW6      | 2021/02/09   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW6      | 2021/05/11   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW6      | 2021/08/10   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW6      | 2021/11/16   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW7/8    | 2021/02/09   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW7/8    | 2021/05/11   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW7/8    | 2021/08/10   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrite (mg/L) - TW7/8    | 2021/11/16   | <mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>  | 1.0  | No        | No         |
| Nitrate (mg/L) - TW3      | 2021/02/09   | 0.8                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW3      | 2021/05/11   | <mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl> | 10.0 | No        | No         |
| Nitrate (mg/L) - TW3      | 2021/11/08   | 0.2                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW5      | 2021/02/09   | 0.2                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW5      | 2021/05/11   | 0.4                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW5      | 2021/08/10   | 0.3                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW5      | 2021/11/16   | 0.2                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW6      | 2020/02/12   | 0.5                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW6      | 2020/05/11   | 0.4                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW6      | 2020/08/10   | 0.6                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW6      | 2020/11/16   | 0.5                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW7/8    | 2020/02/12   | 0.8                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW7/8    | 2020/05/11   | 1.2                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW7/8    | 2020/08/10   | 1.2                                                          | 10.0 | No        | No         |
| Nitrate (mg/L) - TW7/8    | 2020/11/16   | 1.4                                                          | 10.0 | No        | No         |
| Sodium: Na (mg/L) - TW3   | 2019/07/03   | 41.4                                                         | 20*  | Yes       | Yes        |
| Sodium: Na (mg/L) - TW5   | 2019/07/03   | 60.9                                                         | 20*  | Yes       | Yes        |
| Sodium: Na (mg/L) - TW6   | 2019/07/03   | 44.6                                                         | 20*  | Yes       | Yes        |
| Sodium: Na (mg/L) - TW7/8 | 2019/07/03   | 43.5                                                         | 20*  | Yes       | Yes        |

<sup>\*</sup>There is no "MAC" for Sodium. The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

#### **Schedule 15 Sampling:**

The Schedule 15 Sampling is required under O.Reg 170/03. This system is under the plumbing exemption. No plumbing samples were collected.

| Distribution System | Number of Sampling | Number of Samples | Range o | f Results | MAC         | Number of |
|---------------------|--------------------|-------------------|---------|-----------|-------------|-----------|
| Distribution System | Points             |                   | Maximum | (ug/L)    | Exceedances |           |
| Alkalinity (mg/L)   | 12                 | 12                | 256     | 305       | N/A         | N/A       |
| рН                  | 6                  | 6                 | 7.66    | 7.91      | N/A         | N/A       |
| Lead (ug/l)         | 6                  | 6                 | 0.17    | 1.76      | 10          | 0         |

<sup>\*\*</sup> Sodium was reported as an AWQI in 2018. No regulatory reporting requirements in 2019.

#### **Organic Parameters**

These parameters are tested every 36 months as a requirement under O.Reg 170/03. In the event any of the parameters exceed half of the maximum allowable concentration the parameter is required to be sampled quarterly.

|                                     | Sample Date  | Sample Result                                                  | MAC   |     | nber of<br>edances |
|-------------------------------------|--------------|----------------------------------------------------------------|-------|-----|--------------------|
|                                     | (yyyy/mm/dd) |                                                                |       | MAC | 1/2 MAC            |
| Treated Water                       |              |                                                                |       |     |                    |
| Alachlor (ug/L) - TW3               | 2019/09/09   | <mdl 0.3<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Alachlor (ug/L) - TW5               | 2019/09/09   | <mdl 0.3<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Alachlor (ug/L) - TW7/8             | 2019/09/09   | <mdl 0.3<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Alachlor (ug/L) - TW6               | 2019/09/09   | <mdl 0.3<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Azinphos-methyl (ug/L) - TW3        | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>  | 20.00 | No  | No                 |
| Azinphos-methyl (ug/L) - TW5        | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>  | 20.00 | No  | No                 |
| Azinphos-methyl (ug/L) - TW7/8      | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>  | 20.00 | No  | No                 |
| Azinphos-methyl (ug/L) - TW6        | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>  | 20.00 | No  | No                 |
| Benzene (ug/L) - TW3                | 2019/09/09   | <mdl 0.5<="" td=""><td>1.00</td><td>No</td><td>No</td></mdl>   | 1.00  | No  | No                 |
| Benzene (ug/L) - TW5                | 2019/09/09   | <mdl 0.5<="" td=""><td>1.00</td><td>No</td><td>No</td></mdl>   | 1.00  | No  | No                 |
| Benzene (ug/L) - TW7/8              | 2019/09/09   | <mdl 0.5<="" td=""><td>1.00</td><td>No</td><td>No</td></mdl>   | 1.00  | No  | No                 |
| Benzene (ug/L) - TW6                | 2019/09/09   | <mdl 0.5<="" td=""><td>1.00</td><td>No</td><td>No</td></mdl>   | 1.00  | No  | No                 |
| Benzo(a)pyrene (ug/L) - TW3         | 2019/09/09   | <mdl 0.005<="" td=""><td>0.01</td><td>No</td><td>No</td></mdl> | 0.01  | No  | No                 |
| Benzo(a)pyrene (ug/L) - TW5         | 2019/09/09   | <mdl 0.005<="" td=""><td>0.01</td><td>No</td><td>No</td></mdl> | 0.01  | No  | No                 |
| Benzo(a)pyrene (ug/L) - TW7/8       | 2019/09/09   | <mdl 0.005<="" td=""><td>0.01</td><td>No</td><td>No</td></mdl> | 0.01  | No  | No                 |
| Benzo(a)pyrene (ug/L) - TW6         | 2019/09/09   | <mdl 0.005<="" td=""><td>0.01</td><td>No</td><td>No</td></mdl> | 0.01  | No  | No                 |
| Bromoxynil (ug/L) - TW3             | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Bromoxynil (ug/L) - TW5             | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Bromoxynil (ug/L) - TW7/8           | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Bromoxynil (ug/L) - TW6             | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>   | 5.00  | No  | No                 |
| Carbaryl (ug/L) - TW3               | 2019/09/09   | <mdl 3.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbaryl (ug/L) - TW5               | 2019/09/09   | <mdl 3.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbaryl (ug/L) - TW7/8             | 2019/09/09   | <mdl 3.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbaryl (ug/L) - TW6               | 2019/09/09   | <mdl 3.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbofuran (ug/L) - TW3             | 2019/09/09   | <mdl 1.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbofuran (ug/L) - TW5             | 2019/09/09   | <mdl 1.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbofuran (ug/L) - TW7/8           | 2019/09/09   | <mdl 1.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbofuran (ug/L) - TW6             | 2019/09/09   | <mdl 1.0<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Carbon Tetrachloride (ug/L) - TW3   | 2019/09/09   | <mdl 0.2<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl>   | 2.00  | No  | No                 |
| Carbon Tetrachloride (ug/L) - TW5   | 2019/09/09   | <mdl 0.2<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl>   | 2.00  | No  | No                 |
| Carbon Tetrachloride (ug/L) - TW7/8 | 2019/09/09   | <mdl 0.2<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl>   | 2.00  | No  | No                 |
| Carbon Tetrachloride (ug/L) - TW6   | 2019/09/09   | <mdl 0.2<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl>   | 2.00  | No  | No                 |
| Chlorpyrifos (ug/L) - TW3           | 2019/09/09   | <mdl 0.5<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Chlorpyrifos (ug/L) - TW5           | 2019/09/09   | <mdl 0.5<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Chlorpyrifos (ug/L) - TW7/8         | 2019/09/09   | <mdl 0.5<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Chlorpyrifos (ug/L) - TW6           | 2019/09/09   | <mdl 0.5<="" td=""><td>90.00</td><td>No</td><td>No</td></mdl>  | 90.00 | No  | No                 |
| Diazinon (ug/L) - TW3               | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>  | 20.00 | No  | No                 |

|                                                        | Sample Date  | Sample Result                                                   | MAC    | Number of Exceedances |         |  |
|--------------------------------------------------------|--------------|-----------------------------------------------------------------|--------|-----------------------|---------|--|
|                                                        | (yyyy/mm/dd) | Sample Result                                                   | IVIAC  | MAC                   | 1/2 MAC |  |
| Diazinon (ug/L) - TW5                                  | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |
| Diazinon (ug/L) - TW7/8                                | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |
| Diazinon (ug/L) - TW6                                  | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |
| Dicamba (ug/L) - TW3                                   | 2019/09/09   | <mdl 10.0<="" td=""><td>120.00</td><td>No</td><td>No</td></mdl> | 120.00 | No                    | No      |  |
| Dicamba (ug/L) - TW5                                   | 2019/09/09   | <mdl 10.0<="" td=""><td>120.00</td><td>No</td><td>No</td></mdl> | 120.00 | No                    | No      |  |
| Dicamba (ug/L) - TW7/8                                 | 2019/09/09   | <mdl 10.0<="" td=""><td>120.00</td><td>No</td><td>No</td></mdl> | 120.00 | No                    | No      |  |
| Dicamba (ug/L) - TW6                                   | 2019/09/09   | <mdl 10.0<="" td=""><td>120.00</td><td>No</td><td>No</td></mdl> | 120.00 | No                    | No      |  |
| 1,2-Dichlorobenzene (ug/L) - TW3                       | 2019/09/09   | <mdl 0.5<="" td=""><td>200.00</td><td>No</td><td>No</td></mdl>  | 200.00 | No                    | No      |  |
| 1,2-Dichlorobenzene (ug/L) - TW5                       | 2019/09/09   | <mdl 0.5<="" td=""><td>200.00</td><td>No</td><td>No</td></mdl>  | 200.00 | No                    | No      |  |
| 1,2-Dichlorobenzene (ug/L) - TW7/8                     | 2019/09/09   | <mdl 0.5<="" td=""><td>200.00</td><td>No</td><td>No</td></mdl>  | 200.00 | No                    | No      |  |
| 1,2-Dichlorobenzene (ug/L) - TW6                       | 2019/09/09   | <mdl 0.5<="" td=""><td>200.00</td><td>No</td><td>No</td></mdl>  | 200.00 | No                    | No      |  |
| 1,4-Dichlorobenzene (ug/L) - TW3                       | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,4-Dichlorobenzene (ug/L) - TW5                       | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,4-Dichlorobenzene (ug/L) - TW7/8                     | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,4-Dichlorobenzene (ug/L) - TW6                       | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,2-Dichloroethane (ug/L) - TW3                        | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,2-Dichloroethane (ug/L) - TW5                        | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,2-Dichloroethane (ug/L) - TW7/8                      | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,2-Dichloroethane (ug/L) - TW6                        | 2019/09/09   | <mdl 0.5<="" td=""><td>5.00</td><td>No</td><td>No</td></mdl>    | 5.00   | No                    | No      |  |
| 1,1-Dichloroethylene (ug/L) - TW3                      | 2019/09/09   | <mdl 0.1<="" td=""><td>14.00</td><td>No</td><td>No</td></mdl>   | 14.00  | No                    | No      |  |
| 1,1-Dichloroethylene (ug/L) - TW5                      | 2019/09/09   | <mdl 0.1<="" td=""><td>14.00</td><td>No</td><td>No</td></mdl>   | 14.00  | No                    | No      |  |
| 1,1-Dichloroethylene (ug/L) - TW7/8                    | 2019/09/09   | <mdl 0.1<="" td=""><td>14.00</td><td>No</td><td>No</td></mdl>   | 14.00  | No                    | No      |  |
| 1,1-Dichloroethylene (ug/L) - TW6                      | 2019/09/09   | <mdl 0.1<="" td=""><td>14.00</td><td>No</td><td>No</td></mdl>   | 14.00  | No                    | No      |  |
| Dichloromethane (Methylene Chloride) (ug/L) - TW3      | 2019/09/09   | <mdl 5.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |  |
| Dichloromethane (Methylene Chloride) (ug/L) - TW5      | 2019/09/09   | <mdl 5.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |  |
| Dichloromethane (Methylene Chloride) (ug/L) - TW7/8    | 2019/09/09   | <mdl 5.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |  |
| Dichloromethane (Methylene Chloride) (ug/L) - TW6      | 2019/09/09   | <mdl 5.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |  |
| 2,4-Dichlorophenol (ug/L) - TW3                        | 2019/09/09   | <mdl 0.1<="" td=""><td>900.00</td><td>No</td><td>No</td></mdl>  | 900.00 | No                    | No      |  |
| 2,4-Dichlorophenol (ug/L) - TW5                        | 2019/09/09   | <mdl 0.1<="" td=""><td>900.00</td><td>No</td><td>No</td></mdl>  | 900.00 | No                    | No      |  |
| 2,4-Dichlorophenol (ug/L) - TW7/8                      | 2019/09/09   | <mdl 0.1<="" td=""><td>900.00</td><td>No</td><td>No</td></mdl>  | 900.00 | No                    | No      |  |
| 2,4-Dichlorophenol (ug/L) - TW6                        | 2019/09/09   | <mdl 0.1<="" td=""><td>900.00</td><td>No</td><td>No</td></mdl>  | 900.00 | No                    | No      |  |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) (ug/L) - TW3   | 2019/09/09   | <mdl 10.0<="" td=""><td>100.00</td><td>No</td><td>No</td></mdl> | 100.00 | No                    | No      |  |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) (ug/L) - TW5   | 2019/09/09   | <mdl 10.0<="" td=""><td>100.00</td><td>No</td><td>No</td></mdl> | 100.00 | No                    | No      |  |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) (ug/L) - TW7/8 | 2019/09/09   | <mdl 10.0<="" td=""><td>100.00</td><td>No</td><td>No</td></mdl> | 100.00 | No                    | No      |  |
| 2,4-Dichlorophenoxy acetic acid (2,4-D) (ug/L) - TW6   | 2019/09/09   | <mdl 10.0<="" td=""><td>100.00</td><td>No</td><td>No</td></mdl> | 100.00 | No                    | No      |  |
| Diclofop-methyl (ug/L) - TW3                           | 2019/09/09   | <mdl 0.9<="" td=""><td>9.00</td><td>No</td><td>No</td></mdl>    | 9.00   | No                    | No      |  |
| Diclofop-methyl (ug/L) - TW5                           | 2019/09/09   | <mdl 0.9<="" td=""><td>9.00</td><td>No</td><td>No</td></mdl>    | 9.00   | No                    | No      |  |
| Diclofop-methyl (ug/L) - TW7/8                         | 2019/09/09   | <mdl 0.9<="" td=""><td>9.00</td><td>No</td><td>No</td></mdl>    | 9.00   | No                    | No      |  |
| Diclofop-methyl (ug/L) - TW6                           | 2019/09/09   | <mdl 0.9<="" td=""><td>9.00</td><td>No</td><td>No</td></mdl>    | 9.00   | No                    | No      |  |
| Dimethoate (ug/L) - TW3                                | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |
| Dimethoate (ug/L) - TW5                                | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |
| Dimethoate (ug/L) - TW7/8                              | 2019/09/09   | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |  |

|                                                  | Sample Date Sample Result |                                                                 | MAC    | Number of Exceedances |         |
|--------------------------------------------------|---------------------------|-----------------------------------------------------------------|--------|-----------------------|---------|
|                                                  | (yyyy/mm/dd)              | Jampie Result                                                   | IVIAC  | MAC                   | 1/2 MAC |
| Dimethoate (ug/L) - TW6                          | 2019/09/09                | <mdl 1.0<="" td=""><td>20.00</td><td>No</td><td>No</td></mdl>   | 20.00  | No                    | No      |
| Diquat (ug/L) - TW3                              | 2019/09/09                | <mdl 5.0<="" td=""><td>70.00</td><td>No</td><td>No</td></mdl>   | 70.00  | No                    | No      |
| Diquat (ug/L) - TW5                              | 2019/09/09                | <mdl 5.0<="" td=""><td>70.00</td><td>No</td><td>No</td></mdl>   | 70.00  | No                    | No      |
| Diquat (ug/L) - TW7/8                            | 2019/09/09                | <mdl 5.0<="" td=""><td>70.00</td><td>No</td><td>No</td></mdl>   | 70.00  | No                    | No      |
| Diquat (ug/L) - TW6                              | 2019/09/09                | <mdl 5.0<="" td=""><td>70.00</td><td>No</td><td>No</td></mdl>   | 70.00  | No                    | No      |
| Diuron (ug/L) - TW3                              | 2019/09/09                | <mdl 5.0<="" td=""><td>150.00</td><td>No</td><td>No</td></mdl>  | 150.00 | No                    | No      |
| Diuron (ug/L) - TW5                              | 2019/09/09                | <mdl 5.0<="" td=""><td>150.00</td><td>No</td><td>No</td></mdl>  | 150.00 | No                    | No      |
| Diuron (ug/L) - TW7/8                            | 2019/09/09                | <mdl 5.0<="" td=""><td>150.00</td><td>No</td><td>No</td></mdl>  | 150.00 | No                    | No      |
| Diuron (ug/L) - TW6                              | 2019/09/09                | <mdl 5.0<="" td=""><td>150.00</td><td>No</td><td>No</td></mdl>  | 150.00 | No                    | No      |
| Glyphosate (ug/L) - TW3                          | 2019/09/09                | <mdl 25.0<="" td=""><td>280.00</td><td>No</td><td>No</td></mdl> | 280.00 | No                    | No      |
| Glyphosate (ug/L) - TW5                          | 2019/09/09                | <mdl 25.0<="" td=""><td>280.00</td><td>No</td><td>No</td></mdl> | 280.00 | No                    | No      |
| Glyphosate (ug/L) - TW7/8                        | 2019/09/09                | <mdl 25.0<="" td=""><td>280.00</td><td>No</td><td>No</td></mdl> | 280.00 | No                    | No      |
| Glyphosate (ug/L) - TW6                          | 2019/09/09                | <mdl 25.0<="" td=""><td>280.00</td><td>No</td><td>No</td></mdl> | 280.00 | No                    | No      |
| Malathion (ug/L) - TW3                           | 2019/09/09                | <mdl 5.0<="" td=""><td>190.00</td><td>No</td><td>No</td></mdl>  | 190.00 | No                    | No      |
| Malathion (ug/L) - TW5                           | 2019/09/09                | <mdl 5.0<="" td=""><td>190.00</td><td>No</td><td>No</td></mdl>  | 190.00 | No                    | No      |
| Malathion (ug/L) - TW7/8                         | 2019/09/09                | <mdl 5.0<="" td=""><td>190.00</td><td>No</td><td>No</td></mdl>  | 190.00 | No                    | No      |
| Malathion (ug/L) - TW6                           | 2019/09/09                | <mdl 5.0<="" td=""><td>190.00</td><td>No</td><td>No</td></mdl>  | 190.00 | No                    | No      |
| Metolachlor (ug/L) - TW3                         | 2019/09/09                | <mdl 3.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |
| Metolachlor (ug/L) - TW5                         | 2019/09/09                | <mdl 3.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |
| Metolachlor (ug/L) - TW7/8                       | 2019/09/09                | <mdl 3.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |
| Metolachlor (ug/L) - TW6                         | 2019/09/09                | <mdl 3.0<="" td=""><td>50.00</td><td>No</td><td>No</td></mdl>   | 50.00  | No                    | No      |
| Metribuzin (ug/L) - TW3                          | 2019/09/09                | <mdl 3.0<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Metribuzin (ug/L) - TW5                          | 2019/09/09                | <mdl 3.0<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Metribuzin (ug/L) - TW7/8                        | 2019/09/09                | <mdl 3.0<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Metribuzin (ug/L) - TW6                          | 2019/09/09                | <mdl 3.0<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Monochlorobenzene (Chlorobenzene) (ug/L) - TW3   | 2019/09/09                | <mdl 0.5<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Monochlorobenzene (Chlorobenzene) (ug/L) - TW5   | 2019/09/09                | <mdl 0.5<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Monochlorobenzene (Chlorobenzene) (ug/L) - TW7/8 | 2019/09/09                | <mdl 0.5<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Monochlorobenzene (Chlorobenzene) (ug/L) - TW6   | 2019/09/09                | <mdl 0.5<="" td=""><td>80.00</td><td>No</td><td>No</td></mdl>   | 80.00  | No                    | No      |
| Paraquat (ug/L) - TW3                            | 2019/09/09                | <mdl 1.0<="" td=""><td>10.00</td><td>No</td><td>No</td></mdl>   | 10.00  | No                    | No      |
| Paraquat (ug/L) - TW5                            | 2019/09/09                | <mdl 1.0<="" td=""><td>10.00</td><td>No</td><td>No</td></mdl>   | 10.00  | No                    | No      |
| Paraquat (ug/L) - TW7/8                          | 2019/09/09                | <mdl 1.0<="" td=""><td>10.00</td><td>No</td><td>No</td></mdl>   | 10.00  | No                    | No      |
| Paraquat (ug/L) - TW6                            | 2019/09/09                | <mdl 1.0<="" td=""><td>10.00</td><td>No</td><td>No</td></mdl>   | 10.00  | No                    | No      |
| PCB (ug/L) - TW3                                 | 2019/09/09                | <mdl 0.05<="" td=""><td>3.00</td><td>No</td><td>No</td></mdl>   | 3.00   | No                    | No      |
| PCB (ug/L) - TW5                                 | 2019/09/09                | <mdl 0.05<="" td=""><td>3.00</td><td>No</td><td>No</td></mdl>   | 3.00   | No                    | No      |
| PCB (ug/L) - TW7/8                               | 2019/09/09                | <mdl 0.05<="" td=""><td>3.00</td><td>No</td><td>No</td></mdl>   | 3.00   | No                    | No      |
| PCB (ug/L) - TW6                                 | 2019/09/09                | <mdl 0.05<="" td=""><td>3.00</td><td>No</td><td>No</td></mdl>   | 3.00   | No                    | No      |
| Pentachlorophenol (ug/L) - TW3                   | 2019/09/09                | <mdl 0.1<="" td=""><td>60.00</td><td>No</td><td>No</td></mdl>   | 60.00  | No                    | No      |
| Pentachlorophenol (ug/L) - TW5                   | 2019/09/09                | <mdl 0.1<="" td=""><td>60.00</td><td>No</td><td>No</td></mdl>   | 60.00  | No                    | No      |
| Pentachlorophenol (ug/L) - TW7/8                 | 2019/09/09                | <mdl 0.1<="" td=""><td>60.00</td><td>No</td><td>No</td></mdl>   | 60.00  | No                    | No      |
| Pentachlorophenol (ug/L) - TW6                   | 2019/09/09                | <mdl 0.1<="" td=""><td>60.00</td><td>No</td><td>No</td></mdl>   | 60.00  | No                    | No      |
| Phorate (ug/L) - TW3                             | 2019/09/09                | <mdl 0.3<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl>    | 2.00   | No                    | No      |

|                                                         | Sample Date Sample Result |                                                              | MAC  | Number of Exceedances |         |
|---------------------------------------------------------|---------------------------|--------------------------------------------------------------|------|-----------------------|---------|
|                                                         | (yyyy/mm/dd)              | oup.ccou.c                                                   |      | MAC                   | 1/2 MAC |
| Phorate (ug/L) - TW5                                    | 2019/09/09                | <mdl 0.3<="" td=""><td>2.00</td><td>No</td><td>No</td></mdl> | 2.00 | No                    | No      |
| Phorate (ug/L) - TW7/8                                  | 2019/09/09                | <mdl 0.3<="" td=""><td>2</td><td>No</td><td>No</td></mdl>    | 2    | No                    | No      |
| Phorate (ug/L) - TW6                                    | 2019/09/09                | <mdl 0.3<="" td=""><td>2</td><td>No</td><td>No</td></mdl>    | 2    | No                    | No      |
| Picloram (ug/L) - TW3                                   | 2019/09/09                | <mdl 20.0<="" td=""><td>190</td><td>No</td><td>No</td></mdl> | 190  | No                    | No      |
| Picloram (ug/L) - TW5                                   | 2019/09/09                | <mdl 20.0<="" td=""><td>190</td><td>No</td><td>No</td></mdl> | 190  | No                    | No      |
| Picloram (ug/L) - TW7/8                                 | 2019/09/09                | <mdl 20.0<="" td=""><td>190</td><td>No</td><td>No</td></mdl> | 190  | No                    | No      |
| Picloram (ug/L) - TW6                                   | 2019/09/09                | <mdl 20.0<="" td=""><td>190</td><td>No</td><td>No</td></mdl> | 190  | No                    | No      |
| Prometryne (ug/L) - TW3                                 | 2019/09/09                | <mdl 0.1<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Prometryne (ug/L) - TW5                                 | 2019/09/09                | <mdl 0.1<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Prometryne (ug/L) - TW7/8                               | 2019/09/09                | <mdl 0.1<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Prometryne (ug/L) - TW6                                 | 2019/09/09                | <mdl 0.1<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Simazine (ug/L) - TW3                                   | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Simazine (ug/L) - TW5                                   | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Simazine (ug/L) - TW7/8                                 | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Simazine (ug/L) - TW6                                   | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Terbufos (ug/L) - TW3                                   | 2019/09/09                | <mdl 0.3<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Terbufos (ug/L) - TW5                                   | 2019/09/09                | <mdl 0.3<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Terbufos (ug/L) - TW7/8                                 | 2019/09/09                | <mdl 0.3<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Terbufos (ug/L) - TW6                                   | 2019/09/09                | <mdl 0.3<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                    | No      |
| Tetrachloroethylene (ug/L) - TW3                        | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Tetrachloroethylene (ug/L) - TW5                        | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Tetrachloroethylene (ug/L) - TW7/8                      | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| Tetrachloroethylene (ug/L) - TW6                        | 2019/09/09                | <mdl 0.5<="" td=""><td>10</td><td>No</td><td>No</td></mdl>   | 10   | No                    | No      |
| 2,3,4,6-Tetrachlorophenol (ug/L) - TW3                  | 2019/09/09                | <mdl 0.1<="" td=""><td>100</td><td>No</td><td>No</td></mdl>  | 100  | No                    | No      |
| 2,3,4,6-Tetrachlorophenol (ug/L) - TW5                  | 2019/09/09                | <mdl 0.1<="" td=""><td>100</td><td>No</td><td>No</td></mdl>  | 100  | No                    | No      |
| 2,3,4,6-Tetrachlorophenol (ug/L) - TW7/8                | 2019/09/09                | <mdl 0.1<="" td=""><td>100</td><td>No</td><td>No</td></mdl>  | 100  | No                    | No      |
| 2,3,4,6-Tetrachlorophenol (ug/L) - TW6                  | 2019/09/09                | <mdl 0.1<="" td=""><td>100</td><td>No</td><td>No</td></mdl>  | 100  | No                    | No      |
| Triallate (ug/L) - TW3                                  | 2019/09/09                | <mdl 10.0<="" td=""><td>230</td><td>No</td><td>No</td></mdl> | 230  | No                    | No      |
| Triallate (ug/L) - TW5                                  | 2019/09/09                | <mdl 10.0<="" td=""><td>230</td><td>No</td><td>No</td></mdl> | 230  | No                    | No      |
| Triallate (ug/L) - TW7/8                                | 2019/09/09                | <mdl 10.0<="" td=""><td>230</td><td>No</td><td>No</td></mdl> | 230  | No                    | No      |
| Triallate (ug/L) - TW6                                  | 2019/09/09                | <mdl 10.0<="" td=""><td>230</td><td>No</td><td>No</td></mdl> | 230  | No                    | No      |
| Trichloroethylene (ug/L) - TW3                          | 2019/09/09                | <mdl 0.5<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| Trichloroethylene (ug/L) - TW5                          | 2019/09/09                | <mdl 0.5<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| Trichloroethylene (ug/L) - TW7/8                        | 2019/09/09                | <mdl 0.5<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| Trichloroethylene (ug/L) - TW6                          | 2019/09/09                | <mdl 0.5<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| 2,4,6-Trichlorophenol (ug/L) - TW3                      | 2019/09/09                | <mdl 0.1<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| 2,4,6-Trichlorophenol (ug/L) - TW5                      | 2019/09/09                | <mdl 0.1<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| 2,4,6-Trichlorophenol (ug/L) - TW7/8                    | 2019/09/09                | <mdl 0.1<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| 2,4,6-Trichlorophenol (ug/L) - TW6                      | 2019/09/09                | <mdl 0.1<="" td=""><td>5</td><td>No</td><td>No</td></mdl>    | 5    | No                    | No      |
| 2-methyl-4-chlorophenoxyacetic acid (MCPA) (ug/L) - TW3 | 2019/09/09                | <mdl 10.0<="" td=""><td>100</td><td>No</td><td>No</td></mdl> | 100  | No                    | No      |
| 2-methyl-4-chlorophenoxyacetic acid (MCPA) (ug/L) -     | 2019/09/09                | <mdl 10.0<="" td=""><td>100</td><td>No</td><td>No</td></mdl> | 100  | No                    | No      |

|                                                           | Sample Date  | Sample Result                                                | MAC  | Number of<br>Exceedances |         |
|-----------------------------------------------------------|--------------|--------------------------------------------------------------|------|--------------------------|---------|
|                                                           | (yyyy/mm/dd) |                                                              |      | MAC                      | 1/2 MAC |
| TW5                                                       |              |                                                              |      |                          |         |
| 2-methyl-4-chlorophenoxyacetic acid (MCPA) (ug/L) - TW7/8 | 2019/09/09   | <mdl 10.0<="" td=""><td>100</td><td>No</td><td>No</td></mdl> | 100  | No                       | No      |
| 2-methyl-4-chlorophenoxyacetic acid (MCPA) (ug/L) - TW6   | 2019/09/09   | <mdl 10.0<="" td=""><td>100</td><td>No</td><td>No</td></mdl> | 100  | No                       | No      |
| Trifluralin (ug/L) - TW3                                  | 2019/09/09   | <mdl 0.5<="" td=""><td>45</td><td>No</td><td>No</td></mdl>   | 45   | No                       | No      |
| Trifluralin (ug/L) - TW5                                  | 2019/09/09   | <mdl 0.5<="" td=""><td>45</td><td>No</td><td>No</td></mdl>   | 45   | No                       | No      |
| Trifluralin (ug/L) - TW7/8                                | 2019/09/09   | <mdl 0.5<="" td=""><td>45</td><td>No</td><td>No</td></mdl>   | 45   | No                       | No      |
| Trifluralin (ug/L) - TW6                                  | 2019/09/09   | <mdl 0.5<="" td=""><td>45</td><td>No</td><td>No</td></mdl>   | 45   | No                       | No      |
| Vinyl Chloride (ug/L) - TW3                               | 2019/09/09   | <mdl 0.2<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                       | No      |
| Vinyl Chloride (ug/L) - TW5                               | 2019/09/09   | <mdl 0.2<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                       | No      |
| Vinyl Chloride (ug/L) - TW7/8                             | 2019/09/09   | <mdl 0.2<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                       | No      |
| Vinyl Chloride (ug/L) - TW6                               | 2019/09/09   | <mdl 0.2<="" td=""><td>1</td><td>No</td><td>No</td></mdl>    | 1    | No                       | No      |
| Distribution Water                                        |              |                                                              |      |                          |         |
| Trihalomethane: Total (ug/L) Annual Average - DW          | 2021         | 12.25                                                        | 100  | No                       | No      |
| HAA Total (ug/L) Annual Average - DW                      | 2021         | 5.3                                                          | 80.0 | No                       | No      |

MAC = Maximum Allowable Concentration as per O.Reg 169/03

BDL = Below the laboratory detection level

#### **Additional Legislated Samples**

The following two tables are the sample results from additional sample collected at Well 5:

The first table contains the results of sample collected because the adjoining lands where once used for storage of electrical transformers and hydro poles. The transformers and hydro poles are no longer stored at the adjoining lands but sampling will continue. Please note the samples are collected on <a href="mailto:raw">raw</a> water. There is no MAC / IMAC (Maximum Acceptable Concentration / Interim Maximum Acceptable Concentration) for raw water but the treated water MAC / IMAC have been provided for reference.

The second table contains the results of sample collected because of the wells' proximity to the wastewater treatment lagoons. These results help to assess the integrity of the lagoon cells.

| Raw Water: Well 5 Parameter      | Unit o          | Init of Samula Dat |                                              | e Result Value | ODWS |      |
|----------------------------------|-----------------|--------------------|----------------------------------------------|----------------|------|------|
| raw water. Well 5 Parameter      | Measu           | ıre                | Sample Date                                  | Result Value   | MAC  | IMAC |
| Arsenic                          | ug/L            | L                  | July 5, 2021                                 | <0.0001        |      | 25.0 |
| Chromium                         | ug/l            | L                  | July 5, 2021                                 | <0.002         | 50   |      |
| PCBs (Polychlorinated Biphenyls) | ug/L            | L                  | July 5, 2021                                 | <0.05          |      | 3.0  |
| Treated Water Parameter          | Unit of Measure |                    | Treated Water: Well 5<br>Annual Average 2021 |                |      |      |
| TKN (Total Kjeldahl Nitrogen)    | mg/L            |                    | 0.02                                         |                |      |      |
| Total Phosphorus                 | mg/L            |                    | 0.002                                        |                |      |      |
| o-Phosphate (O-PO4)              | mg/L            |                    |                                              | 0.0118         |      |      |
| Dissolved Reactive Phosphorus    | mg/L            |                    | 0.0038                                       |                |      |      |

| NH3 + NH4 as N | mg/L | 0.02 |
|----------------|------|------|
|----------------|------|------|

## **Major Maintenance Summary**

| WO #    | Description                                                     |
|---------|-----------------------------------------------------------------|
| 2267859 | Capital Well 3 chlorine injector pipe leak                      |
| 2364722 | Capital Well 8 Flow meter troubleshooting                       |
| 2365365 | Capital New Flow Control Valve for Well #3                      |
| 2405779 | Capital Capital Controls - Daily Reports not generating         |
| 2408280 | Capital SAI Global DWQMS audit                                  |
| 2450770 | Capital Reservoir                                               |
| 2451400 | Capital Well 3 Flow Meter                                       |
| 2453984 | Capital New Chlorine Pump Well 3                                |
| 2455049 | Capital Tower Safety inspection                                 |
| 2497835 | Capital Well 6 Chlorine Panel Parts                             |
| 2500928 | Capital Critical Spare Free Chlorine probe                      |
| 2502339 | Capital Replacement PRV's for chlorine panels SB18              |
| 2540985 | Capital Capital Controls Communication Loss Well #3             |
| 2093253 | Capital Pump parts                                              |
| 2133322 | Capital Well level monitoring                                   |
| 2176654 | Capital Well 6 communications                                   |
| 2221236 | Capital Flygt submersible utility pump 600V                     |
| 2223385 | Capital SCADA system assistance                                 |
| 2223410 | Capital Total Chlorine Caps                                     |
| 2267667 | Capital Replace outdoor wall packs to meet town lighting bylaw  |
| 2316803 | Capital Replacment parts for water regulating valve for well #3 |
| 2316878 | Capital service call VFD well pump 8                            |
| 2318753 | Capital Well 3 outdoor light                                    |
| 2359832 | Capital Replace defective outdoor wall fixture                  |
| 2363542 | Capital Well 6 Flow meter faulting                              |
| 2363757 | Capital Chorine panel replacement Well 6                        |
| 2364696 | Capital Well 8 Flow meter fault                                 |

| WO #    | Description                                           |
|---------|-------------------------------------------------------|
| 2405776 | Capital Capital Controls Daily Reports not generating |

### **Distribution Highlights**

Distribution Highlights were provided by the Munipality of Mississippi Mills.

#### **Compliance Report Card**

In September 2021, the MECP completed an on site Inspections for the Distribution system. The Inspection report rating was 100%.

An on site QEMS External Audit was completed and there was no non-conformances.

#### **Maintenance & Operations**

The following program were completed in 2021:

- The water main flushing program
- the valve turning program was 100% completed in 2021.
- Fire flow testing was completed throughout the entire system.
- Several repairs valves, hydrants, services, and curb stops

New water mains commissioned on Martin Street, White Tail Ridge Phase 3&4 Subdivision and Mill Run Phase 6 Subdivision.

#### **Planning Initiatives**

The Schedule 'B' Class EA, Water Storage construction advanced in 2021. The substantial completion is expected for February 2022.

Additional planning initiatives include:

- Radio Frequency Meter Upgrades
- Annual Infiltration and Inflow Program
- Municipal Licence renewed November of 2021
- Long Term Financial Plan and Rate Study Completed in 2021

# **Appendix A**

#### **WTRS Data and Submission Confirmation**

