Mississippi Mills Wastewater System

2021 Annual Report

January 1, 2021 – December 31, 2021

Prepared By

This report has been prepared to meet the requirements set out in the facility Certificate of Approval #1637-AC8NT7 dated August 8, 2016.

Contents

Compliance Report Card1
System/Process Description1
Proposed Alterations, Extensions, or Replacement to Works2
Effluent Quality Assurance or Control Measures 2
Treatment Flows
Raw Flow (m ³ /d)3
Annual Comparison (m³)3
Septage Volumes4
Total Monthly Volume Received4
Raw Sewage Quality5
Effluent Quality
Effluent Exceedance Summary5
Other Effluent Sampling Issues5
Effluent Parameter Summary
CBOD5
Total Suspended Solids7
Total Phosphorus
Total Ammonia Nitrogen9
E-coli
pH10
Acute Lethality10
Septage Quality
Biosolids11
Biosolids Disposal Summary11
Annual Comparison11
Quality12
Summary of Complaints12
Summary of Bypass/Overflows 12
Summary of Spills/Abnormal Discharges 12
Maintenance
Maintenance Highlights13

Calibration	14
Collection Highlights	14
Collection Highlights	14
Planning Initiatives	
Facility Assessment Report	A
Septage Sample Data	В
Biosolids Quality	C
Calibration Records	D
	D

Compliance Report Card

Compliance Event	# of Events	Details
Ministry of Environment Inspections	0	There were no Inspections during the reporting period
Ministry of Labour Inspections	0	There were no Inspections during the reporting period
Effluent Parameter Exceedances	0	There were no parameter exceedances during the reporting period
Bypass/Overflows	1	Gemmill's Bay SPS • March 26 2021
Community Complaints	0	There were no Community Complaints during the reporting period
Spills	0	There were no spills during the reporting period
Operating Issues	0	There were no operating issues during the reporting period

System/Process Description

Flow enters the treatment and passes through screen channels which contain fine screens that lead to a screw compactor. Grit is removed using circular vortex grit removal, air lift and grit classifier system units. Flow then moves to secondary treatment which consists of two (2) treatment trains using the extended aeration activated sludge process. Each train is equipped with aeration tanks, anoxic tanks and a secondary clarifier. Chemicals are added to the process for phosphorus control. Tertiary treatment is achieved using Five (5) filter trains with three (3) filtration cells in each. Disinfection is provided using Ultraviolet (UV) lights. There is ability for chlorine disinfection in the event the UV units fail.

Solids from the biological process are transferred from the waste tank to a rotary disk thickener. From there the solids are processed through autothermic thermophilic aerobic digesters. The solids are then pressed to a cake form.

The Mississippi Mills WWTP also consists of a septage receiving station consisting of a storage tank, two (one duty and one standby) dry-pit pumps, and a grinder on the inlet piping.

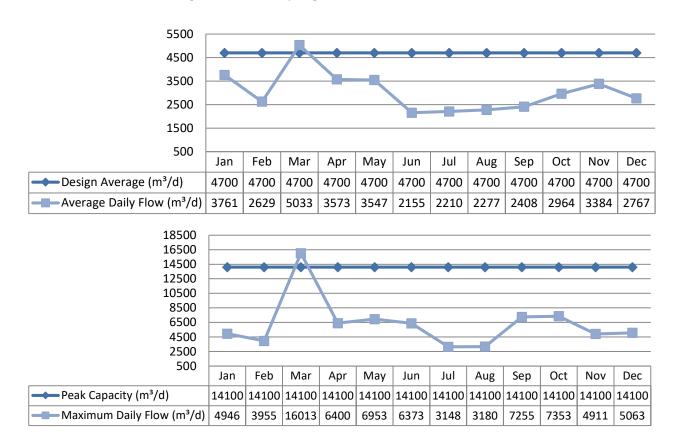
Notice of Modifications - Proposed Alterations, Extensions, or Replacement to Works

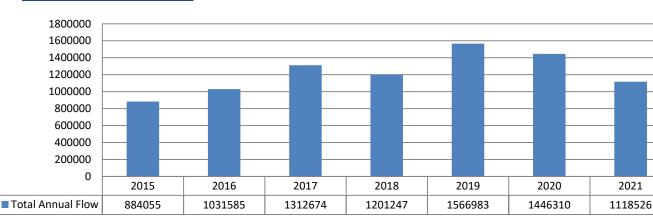
There were no modifications, proposed alterations, extensions or replacements that would affect Schedule A subsection 1 and subsection 3 of the Certificate of Approval.

Effluent Quality Assurance or Control Measures

The Municipality of Mississippi Mills facilities are part of OCWA's operational Mississippi Cluster. The facilities are supported by regional and corporate resources. Operational Services are delivered by OCWA staff that live and work in the community.

OCWA operates facilities in compliance with applicable regulations. The facility has comprehensive manuals detailing operations, maintenance, instrumentation, and emergency procedures. All procedures are treated as active documents, with annual reviews.

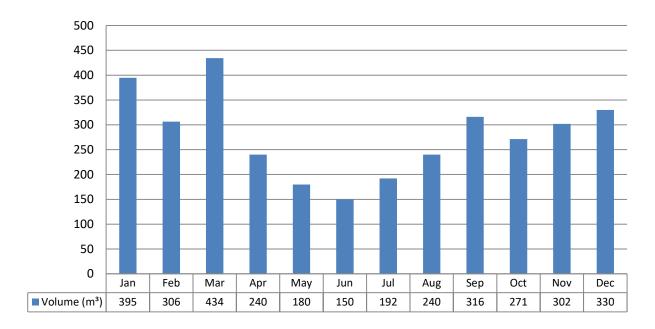

OCWA has additional "Value Added" and operational support services that the Municipality of Mississippi Mills benefits from including:


- Access to a network of operational compliance and support experts at the regional and corporate level, as well as affiliated programs that include the following:
 - Quality & Environmental Management System, Occupational Health & Safety System and an internal compliance audit system
 - Process Data Management (PDM) facility operating information repository, which consolidates field data, online instrumentation, and electronic receipt of lab test results for reporting, tracking and analysis
 - Work Management System (WMS) that tracks and reports maintenance activity, and creates predictive and preventative reports
 - Outpost 5 wide-area SCADA system allows for process optimization and data logging, process trending, remote alarming and optimization of staff time
- Client reporting which includes operational data, equipment inventory, financial statements, maintenance work orders, and capital status reports
- Site-Specific Contingency Plans and Standard Operating Procedures
- Use of accredited laboratories
- Additional support in response to unusual circumstances, and extra support in an emergency.
- Use of sampling schedules for external laboratory sampling

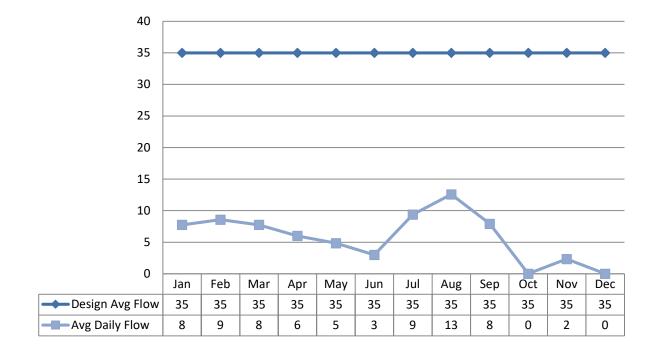
Treatment Flows

Raw Flow (m³/d)

Compliance is calculated as an annual average flow. The annual average flow for 2021 was $3059 \text{ m}^3/\text{d}$, which is in compliance with the limit of $4700 \text{ m}^3/\text{d}$. The flow spikes are associated to wet weather events such as rain and seasonal changes such as the spring snow melt.



Annual Comparison (m³)


Septage Volumes

Average daily flow for $2021 = 5.8 \text{ m}^3/\text{d}$ Total Volume for $2021 = 2128.27 \text{ m}^3$

Septage flows are included in the Raw Flows as it enters the influent stream prior to the raw flow meter.

Total Monthly Volume Received

Raw Sewage Quality

Results of raw sewage concentrations and loadings are available in the Facility Performance Assessment Report in Appendix A.

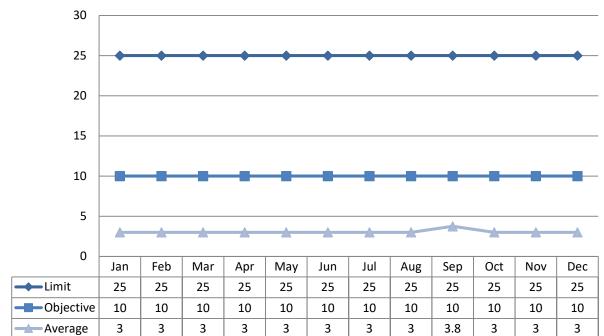
Effluent Quality

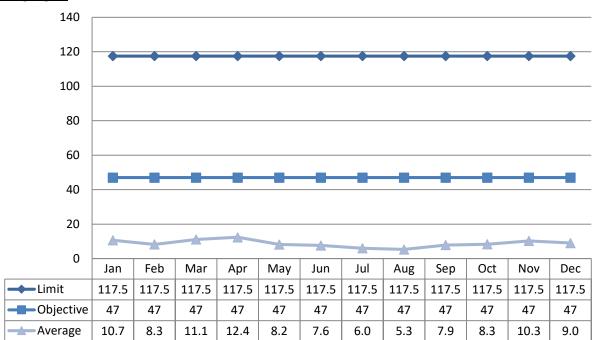
The limits are based on current requirements in the facilities Environmental Compliance Approval. Laboratory samples are submitted to an accredited laboratory for regulatory analysis.

The Federal Government also regulates certain sewage effluent parameters under the Federal Fisheries Act. The results are submitted to Environment and Climate Change Canada's Effluent Regulatory and Reporting Information System (ERRIS) on a quarterly basis.

Effluent Exceedance Summary

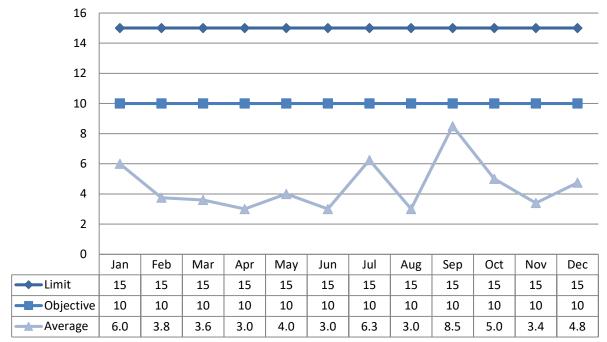
Date	Parameter	Exceedance	Limit	Value	Corrective Action
	There we	ere no effluent exceedances	during the r	eporting per	iod
			0	1 01	

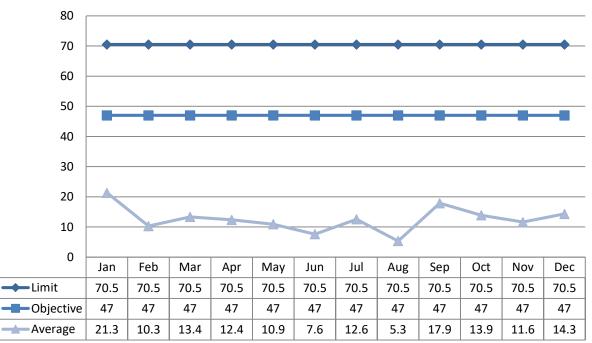

Other Effluent Sampling Issues

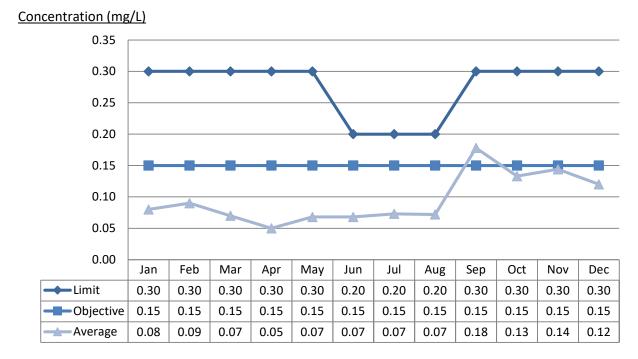

Sample	Legislation	Date	Details	Response
	The we	ere no effluent sa	ampling issues during the rep	porting period

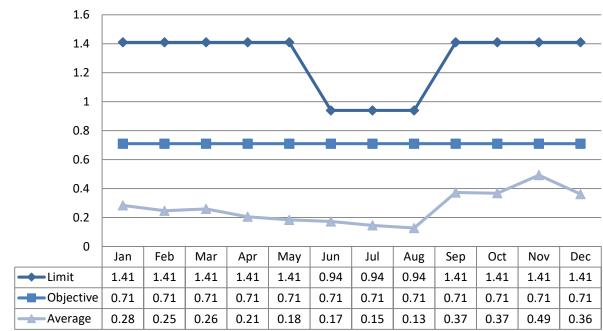
Effluent Parameter Summary

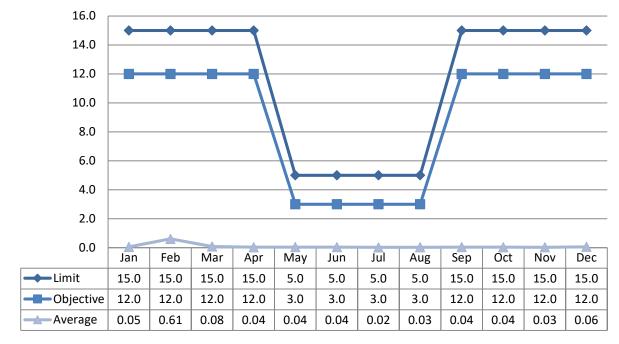
CBOD5

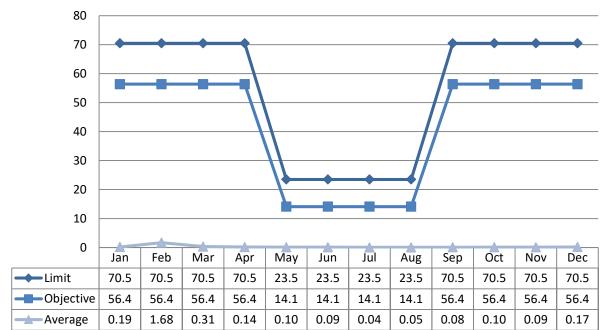

Concentration (mg/L)



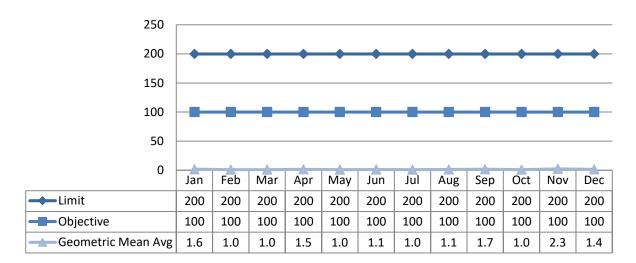

Total Suspended Solids

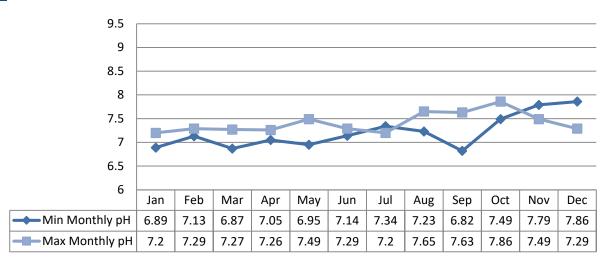



Total Phosphorus



Total Ammonia Nitrogen


Concentration (mg/L)



E-coli

Geometric Mean Average

pН

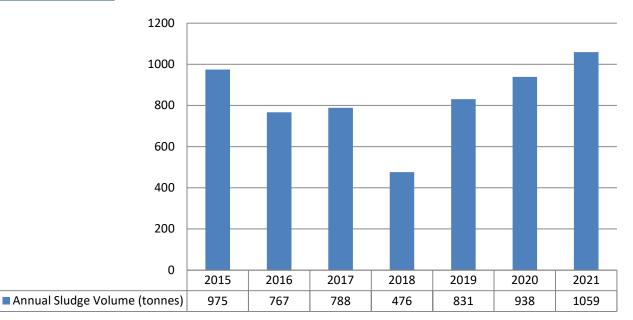
Acute Lethality

There were four (4) samples collected in 2021 and tested for acute lethality (Rainbow Trout and Daphnia Magna). Results are displayed as % mortality.

Quarter	Rainbow Trout	Daphnia Magna
1 st Quarter	0%	0%
2 nd Quarter	0%	0%
3 rd Quarter	0%	0%
4 th Quarter	0%	0%

Septage Quality

Septage was tested when received. A summary of the results are attached in Appendix B. Grab samples are collected from each load.


The spill containment area for the septage receiving station received an upgrade in 2020. The upgrade included relocate piping to the catch basin adjacent to the WWTP, relocated piping to the septage tank in the WWTP and proper slope of septage receiving station to ensure no spill or overflow from the spill containment area to the natural environment will occur.

Biosolids

Sludge generated from the treatment plant was spread on agricultural land during the spreading season as per the Nutrient Management Act O.Reg 267/03. This facility dewaters and biosolids are handled as cake. During the winter cake is stored on-site until certified sites are ready for spreading.

Biosolids Disposal Summary

Date	Site	NASM Plan number	Volume (MT)
February 11-25 2021	UTEAU		341.04
May 18 2021	Cochran – Steele Farm	23782	310.87
November 5 -8 2021	Cochran – Steele Farm	23782	407.10
		Total	1059.01

Annual Comparison

Quality

The biosolids sampling results are summarized in Appendix C. All results met the established guidelines.

Summary of Complaints

The following community complaints were received related to the operations of the Mississippi Mills WWTP.

Date	Location	Details
There were no community complaints for the reporting period.		e reporting period.

Summary of Bypass/Overflows

Event	Details of Events
Gemmill's Bay SPS March 26 2021	A heavy rain and snow melt caused high flows at Gemmill's Bay sewage pumping station. Both pumps were running at full speed could not keep up with the flow. This resulted in an overflow of raw sewage.

Summary of Spills/Abnormal Discharges

Event	Details of Events
There was no spills o	r abnormal discharges during the reporting period

Maintenance

OCWA uses a risk-based preventative maintenance framework that ensures assets are maintained to manufacturer's and/or industry standards. Maintenance is completed using various tools and operational supports. The Ottawa Valley Hub has specialized certified staff such as Millwrights, Electricians and Instrumentation Specialists to name a few.

OCWA uses a Workplace Maintenance System (WMS). WMS is a maintenance tracking system that can generate work orders as well as give summaries of completed and scheduled work. During the year, the operating authority at the facility generates scheduled work orders on a weekly, monthly and annual basis. The service work is recorded in the work order history. This ensures routine and preventive maintenance is carried out. Emergency and capital repair maintenance is completed and added to the system.

Capital projects are listed and provided to the Municipality of Mississippi Mills in the form of a "Capital Forecast". This list is developed by facility staff and provides recommendations for facility components requiring upgrading or improvement.

Maintenance Highlights

Gemmill's Bay Sewage Pumping Station is equipped with a diesel generator and an automatic transfer switch to provide backup power to the pumping station in the event of a power outage. The transfer switch was replaced in 2021.

WO #	Summary
2091150	Capital UV Panel battery
2091967	Capital UV panel 2 "mother board"
2092247	Capital - Capital Control on site for ATAD and UV controls
2092534	Capital Disk Thickener Solenoid valve
2093256	Capital Generator Transfer Switch - loss of PLC program
2093444	Capital Turbo Blower #3 Breaker overloads
2093475	Capital ThermAer2 50hp VFD replacement
2093788	Capital Rebuild filtrate pump
2130202	Capital Replace 50 HP VFD
2133264	Capital Emergency lights batteries
2133265	Capital Bruce Mechanical on site for Boilers/ HVAC
2133643	Capital Replacement LED bulbs
2173650	Capital Sludge judge
2312491	Capital Filter Trough
2317503	Capital ATAD Roof Repair - Revised scope-Change Order Report
2317516	Capital Chemical flow sensor
2361534	Capital Disk Thickener Level sensor
2501694	Capital UVI sensor unit
2542901	Capital RAS Pump Replacement Parts
2542963	Capital Annual Website Registration Fee
2580857	Capital TrojanUV3000plus- Sensor Assay
2176011	Capital Replace motor bearings on SNDR ThemAer pump 3
2178260	Capital Replacement filtrate pump
2178269	Capital Parts and install for RAS pumps
2222409	Capital ATAD pump requires new Bearings
2224143	Capital Aeration transfer pump rebuild
2224163	Capital Rebuild filtrate pump
2224819	Capital Repair Epoxy paint on discharge side of plates on Fournier press
2267126	Capital Bruce Mechanical on site
2270365	Capital Front door lock
2314067	Capital Air Conditioner Maintenance
2316876	Capital SCADA service call
2362008	Capital Turbo blower #1 VFD Failure
2364805	Capital Clarifier drive sprocket
2365184	Capital SCADA system failure

WO #	Summary
2402453	Capital UV replacement parts
2407342	Capital MAU 1 On Head works Roof Not Starting
2407410	Capital Repair Back Flow Preventers
2449219	Capital - Capital Controls on site
2449819	Capital Facility Refrigerator
2450745	Capital ATAD process relay failure
2453763	Capital Rebuild #2 RAS pump
2455070	Capital Installing Davit stand for anoxic zone mixer in aeration tank #1
2498085	Capital CP7 ATAD Transfer Pump Controls - Capital Control
2498086	Capital Fournier Press polymer pump
2500965	Capital Chemical barrel scale
2501689	Capital Modify Fournier press cake arms
2580859	Capital Disk Thicker sludge pump 2 fault

Calibration

The flow meters were calibrated on January 29, 2021. Records are attached in Appendix D. Analyzers are scheduled for maintenance in the WMS program. Work is completed and logged in the logbook and in the WMS.

Collection Highlights

Collection Highlights were provided by the Municipality of Mississippi Mills.

Collection Highlights

Maintenance & Operations

- One (1) quarter of Town of Almonte flushed and CCTV
- Sewer inspection program
- Several repairs multiple laterals to main line
- Preventative flushing
- Lining of sewer on Mitcheson
- New sewer mains commissioned in White Tail Ridge Phase 3 & 4 Subdivision (Small Bore), Mill Run Phase 6 Subdivision, and new industrial subdivision.

Planning Initiatives

- New Sewer mains on Princess Street
- Lining of sewer mains various locations
- Preventative flushing
- Update to Water and Waste Water Master Plan in Preventative flushing

Facility Assessment Report

Ontario Clean Water Agency Performance Assessment Report Wastewater/Lagoon

From:

Facility: [5678] MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY

Works: [110000873]

		01/2021	02/2021	03/2021	04/2021	05/2021	06/2021	07/2021	08/2021	09/2021	10/2021	11/2021	12/2021	<total></total>		<avg></avg>	<	Max>	<criteria></criteria>
Flows:																			
Raw Flow: Total - Raw Sewage (m ³)		116592.27	73616.04	156012.05	107194.06	109944.20	64647.17	68503.35	70602.17	72242.66	91869.45	101528.60	85773.87	1118525.89					
Raw Flow: Avg - Raw Sewage (m ³ /d)		3761.04	2629.14	5032.65	3573.14	3546.59	2154.91	2209.79	2277.49	2408.09	2963.53	3384.29	2766.90			3058.96			
Raw Flow: Max - Raw Sewage (m ³ /d)		4946.20	3955.15	16013.12	6400.38	6952.57	6372.80	3148.31	3180.00	7254.58	7353.13	4910.83	5063.24				16	6013.12	
Eff. Flow: Total - Final Effluent (m ³)		110230.96	76995.49	115033.66	123588.44	84660.98	76237.68	62283.21	55117.90	63096.87	86150.42	102688.27	93471.03	1049554.91					
Eff. Flow: Avg - Final Effluent (m ³ /d)		3555.84	2749.84	3710.76	4119.61	2731.00	2541.26	2009.14	1778.00	2103.23	2779.05	3422.94	3015.19			2876.32			
Eff. Flow: Max - Final Effluent (m ³ /d)		4130.23	3699.39	6517.26	34370.00	4148.13	7788.69	2566.58	2441.93	3645.00	5465.71	5115.56	4476.81				34	370.00	
Carbonaceous Biochemical Oxygen Demand: CBOD:																			
Raw: # of samples of cBOD5 - Raw Sewage (mg/L)		4	4	5	5	4	5	4	5	3	4	5	4	52					
Eff: Avg cBOD5 - Final Effluent (mg/L)	<	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.750	3.000	3.000	3.000		<	3.063	< 3	3.750	25.0
Eff: # of samples of cBOD5 - Final Effluent (mg/L)		4	4	5	4	4	5	4	5	4	4	5	4	52					
Loading: cBOD5 - Final Effluent (kg/d)	<	10.668	8.250	11.132	12.359	8.193	7.624	6.027	5.334	7.887	8.337	10.269	9.046		<	8.760	< 1	2.359	117.5
Percent Removal: cBOD5 - Raw Sewage (mg/L)		96.947	98.046	96.964	99.039	97.260	97.914	98.125	98.552	97.745	97.321	97.596	96.319				9	99.039	
Biochemical Oxygen Demand: BOD5:																			
Raw: # of samples of BOD5 - Raw Sewage (mg/L)		4	4	5	5	4	5	4	5	4	4	5	4	53					
Eff: Avg BOD5 - Final Effluent (mg/L)	<	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		<	3.000 ·	< 3	3.000	25.0
Loading: BOD5 - Final Effluent (kg/d)	<	10.668	8.250	11.132	12.359	8.193	7.624	6.027	5.334	6.310	8.337	10.269	9.046		<	8.629	< 1	2.359	
Percent Removal: BOD5 - Raw Sewage (mg/L)		97.674	98.370	98.003	99.252	97.917	98.260	98.017	98.709	98.616	97.924	98.047	97.229				9	9.252	
Total Suspended Solids: TSS:																			
Raw: Avg TSS - Raw Sewage (mg/L)		180.000	171.250	117.800	207.800	277.500	256.800	210.250	440.400	445.250	252.000	198.000	156.000			242.754	44	45.250	
Raw: # of samples of TSS - Raw Sewage (mg/L)		4	4	5	5	4	5	4	5	4	4	5	4	53					
Eff: Avg TSS - Final Effluent (mg/L)	<	6.000	3.750	3.600	3.000	4.000	3.000	6.250	3.000	8.500	5.000	3.400	4.750		<	4.521	8	8.500	15.0
Eff: # of samples of TSS - Final Effluent (mg/L)		4	4	5	4	4	5	4	5	4	4	5	4	52					
Loading: TSS - Final Effluent (kg/d)	<	21.335	10.312	13.359	12.359	10.924	7.624	12.557	5.334	17.877	13.895	11.638	14.322		<	12.628	2	21.335	70.5
Percent Removal: TSS - Raw Sewage (mg/L)		96.667	97.810	96.944	98.556	98.559	98.832	97.027	99.319	98.091	98.016	98.283	96.955				9	99.319	
Total Phosphorus: TP:																			
Raw: Avg TP - Raw Sewage (mg/L)		3.290	5.408	3.602	4.390	6.713	7.836	5.575	9.432	10.523	4.528	4.714	2.580			5.716	1	0.523	
Raw: # of samples of TP - Raw Sewage (mg/L)		4	4	5	5	4	5	4	5	4	4	5	4	53					
Eff: Avg TP - Final Effluent (mg/L)		0.080	0.090	0.070	0.050	0.068	0.068	0.073	0.072	0.178	0.133	0.144	0.120			0.095	(0.178	0.2 - 0.3
Eff: # of samples of TP - Final Effluent (mg/L)		4	4	5	4	4	5	4	5	4	4	5	4	52					
Loading: TP - Final Effluent (kg/d)		0.284	0.247	0.260	0.206	0.184	0.173	0.146	0.128	0.373	0.368	0.493	0.362			0.269	(0.493	1.41
Percent Removal: TP - Raw Sewage (mg/L)		97.568	98.336	98.057	98.861	98.994	99.132	98.700	99.237	98.313	97.073	96.945	95.349				9	99.237	
Nitrogen Series:																			
Raw: Avg TKN - Raw Sewage (mg/L)		28.125	39.350	25.360	34.640	37.100	43.720	36.550	53.960	45.075	38.850	28.500	28.350			36.632	5	53.960	
Raw: # of samples of TKN - Raw Sewage (mg/L)		4	4	5	5	4	5	4	5	4	4	5	4	53					
Eff: Avg TAN - Final Effluent (mg/L)		0.053	0.610	0.084	0.035	0.038	0.036	0.020	0.028	0.040	0.035	0.026	0.058		<	0.088	(0.610	5.0 - 15.0
Eff: # of samples of TAN - Final Effluent (mg/L)		4	4	5	4	4	5	4	5	4	4	5	4	52					
Loading: TAN - Final Effluent (kg/d)		0.187	1.677	0.312	0.144	0.102	0.091	0.040	0.050	0.084	0.097	0.089	0.173		<	0.254		1.677	70.5
Disinfection:																			
Eff: GMD E. Coli - Final Effluent (cfu/100mL)		1.627	1.000	1.000	1.495	1.000	1.149	1.000	1.149	1.682	1.000	2.339	1.414			1.321	1	2.339	200.0
Eff: # of samples of E. Coli - Final Effluent (cfu/100mL)		4	4	5	4	4	5	4	5	4	4	5	4	52					

Appendix B

Septage Sample Data

Ontario Clean Water Agency Time Series Info Report

From: 01/01/2021 to 31/12/2021

Facility Org Number:	5678
Facility Works Number:	110000873
Facility Name:	MISSISSIPPI MILLS W
Facility Owner:	Municipality: Municipa
Facility Classification:	Class 3 Wastewater Tr
Receiver:	Mississippi River
Service Population:	

WASTEWATER TREATMENT FACILITY pality of Mississippi Mills Freatment

14100.0 m3/day **Total Design Capacity:** 01/2021 02/2021 03/2021 04/2021 05/2021 06/2021 07/2021 08/2021 09/2021 10/2021 11/2021 12/2021 Total Avg Max Min Septage / Biochemical Oxygen Demand: BOD5 - mg/L Count Lab Max Lab Mean Lab 919.5 Min Lab Septage / Total Kjeldahl Nitrogen: TKN - mg/L Count Lab Max Lab Mean Lab Min Lab Septage / Total Phosphorus: TP - mg/L Count Lab Max Lab Mean Lab 827.5 Min Lab Septage / Total Solids: TS - mg/L Count Lab ΤI Max Lab Mean Lab Min Lab Septage / Total Suspended Solids: TSS - mg/L Count Lab Max Lab Mean Lab Min Lab Septage / pH - ---Count Lab Max Lab 6.75 5.97 6.75 Mean Lab 6.75 5.97 6.36 Min Lab 6.75 5.97 5.97

Biosolids Quality

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC Solids and Nutrients

Facility:	MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY
Works:	5678
Period:	01/01/2021 to 12/01/2021

Facility Works Number:	1.10000873E8				
Facility Name:	MISSISSIPPI MILLS WASTE	WATER TREATMENT FACILITY			
Facility Owner:	Municipality: Municipality	of Mississippi Mills			
Facility Classification:	Class 3 Wastewater Treatment				
Receiver:	Mississippi River				
Service Population:					
Total Design Capacity:	14100.0 m3/day				
Period Being Reported:	01/01/2021	12/01/2021			

Note: all parameters in this report will be derived from the Bslq Station

Month	Total Sludge Hauled (m3)	Avg. Total Solids (mg/L)	Avg. Volatile Solids (mg/L)	Avg. Total Phosphorus (mg/L)	Ammonia (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	TKN (mg/L)	Ammonia + Nitrate (mg/L)	Potassium (mg/L)				
Site	MISSISSIPPI MILLS WASTEW	MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY												
Station	Bslq Station only	slq Station only												
Parameter Short Name	HauledVol	тѕ	vs	ТР	NH3p_NH4p_N	NO3-N	NO2-N	TKN	calculation in	к				
T/s	IH Month.Total		Lab Published Month Mean			Lab Published Month Mean	Lab Published Month Mean	Lab Published Month Mean	report - no T/S	Lab Published Month Mean				
Jan		44,950.000	25,900.000	1,276.000	3.930	127.100	0.550	1,825.000	65.515					
Feb		43,550.000	26,000.000	1,400.000	2.545	78.400	0.300	2,130.000	40.473					
Mar		40,550.000	25,400.000	1,350.000	279.500	0.133	0.167	2,810.000	139.817					
Apr		37,450.000	22,650.000	1,120.000	247.550	1.100	0.250	2,260.000	124.325					
Мау		42,466.667	23,633.333	1,170.000	182.800	0.433	0.400	1,786.667	91.617					
Jun		46,100.000	26,600.000	1,415.000	20.150	128.000	1.000	1,780.000	74.075					
Jul		52,550.000	30,900.000	1,550.000	186.500	1.000	1.000	1,945.000	93.750					
Aug		54,866.667	29,733.333	2,206.667	22.343	31.600	1.000	1,940.000	26.972					
Sep		48,050.000	25,750.000	2,230.000	63.000	12.750	1.000	1,980.000	37.875					

Oct		62,450.000	34,100.000	1,730.000	15.150	28.000	0.550	1,650.000	21.575	
Nov		53,666.667	29,233.333	1,600.000	7.900	3.000	1.000	1,686.667	5.450	
Dec		52,650.000	28,100.000	1,465.000	36.200	31.950	1.000	1,665.000	34.075	
Average		48,275.000	27,333.333	1,542.722	88.964	36.956	0.685	1,954.861	62.960	
Total	0.000	579,300.000	328,000.000	18,512.667	1,067.568	443.467	8.217	23,458.333	755.518	0.000

Ontario Clean Water Agency Biosolids Quality Report - Liquid Digestor Type: AEROBIC Metals and Criteria

Facility:	MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY
Works:	5678
Period:	01/01/2021 to 12/01/2021

Note: all parameters in this report will be derived from the Bslq Station

	1			1	r				1	Г	
Month	Arsenic (mg/L)	Cadmium (mg/L)	Cobalt (mg/L)	Chromium (mg/L)	Copper (mg/L)	Mercury (mg/L)	Molybdenum (mg/L)	Nickel (mg/L)	Lead (mg/L)	Selenium (mg/L)	Zinc (mg/L)
Site	MISSISSIPPI MILL	S WASTEWATER	REATMENT FACI	LITY							
Station	Bslq Station only										
Parameter Short Name			Co	Cr	Cu	Hg	Мо	Ni	Pb	Se	Zn
T/s	Lab Published Month Mean		Lab Published Month Mean								
Jan											
Feb											
Mar											
Apr											
May											
Jun											
luL											
Aug											
Sep											
Oct											
Νον											
Dec											
Average											
Concentrations (mg/kg of	170.000	34.000	340.000	2,800.000	1,700.000	11.000	94.000	420.000	1,100.000	34.000	4,200.000
Metal Concentrations in Sludge (mg/kg)											
										Ì	
	1				1						L

Ontario Clean Water Agency Biosolids Quality Report - Liquid - Based on Last 4 Samples Digestor Type: AEROBIC

Facility: Works: Period: MISSISSIPPI MILLS WASTEWATER TREATMENT FACILITY 5678 01/01/2021 to 12/01/2021

Note: all parameters in this report will be derived from the Bslq Station

Parameter Short Name	Time Series	11/15/2021	11/29/2021	12/06/2021	12/21/2021	Average	Metal Concentrations in Sludge (mg/kg):	Max. Permissible Metal Concentrations (mg/kg of Solids):
As (mg/L)	Lab Published							170
Cd (mg/L)	Lab Published							34
Co (mg/L)	Lab Published							340
Cr (mg/L)	Lab Published							2800
Cu (mg/L)	Lab Published							1700
Hg (mg/L)	Lab Published							11
Mo (mg/L)	Lab Published							94
Ni (mg/L)	Lab Published							420
Pb (mg/L)	Lab Published							1100
Se (mg/L)	Lab Published							34
Zn (mg/L)	Lab Published							4200
E. Coli: Dry Wt (cfu/g)	Lab Published						E.Coli average is the GMD	
TS (mg/L)	Lab Published	51,500.000	52,400.000	57,800.000	47,500.000	52,300.000		
VS (mg/L)	Lab Published	28,200.000	28,800.000	31,100.000	25,100.000	28,300.000		
TP (mg/L)	Lab Published	1,310.000	1,180.000	1,570.000	1,360.000	1,355.000		
NO2-N (mg/L)	Lab Published	1.000	1.000	1.000	1.000	1.000		
TKN (mg/L)	Lab Published	1,360.000	1,330.000	1,700.000	1,630.000	1,505.000		
K (mg/L)	Lab Published							
NH3p_NH4p_N (mg/L)	Lab Published	10.000	2.100	63.800	8.600	21.125]	
NO3-N (mg/L)	Lab Published	4.700	3.300	1.000	62.900	17.975		

Appendix D

Calibration Records

10-830 Industrial Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

The Town of Almonte

Waste Water Calibration / Verification of Instrumentation

Report January 29, 2021

Calibration Date: January 27, 2021

Calibration Due: January 27, 2022

Verifications performed by Tim Stewart

Report prepared by Tim Stewart

10-830 Industrial Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Table of Contents

1	LIST OF VERIFIED DEVICES	- 2 -
2	EQUIPMENT USED	- 3 -
3	PROCEDURES USED	- 3 -
3.1	Flowmeter Verification	- 3 -
4	INSTRUMENT VERIFICATION	- 6 -
4.1	FIT- 310 Septage Inlet Grinder	- 7 -
4.2	FIT- 350 Septage Tank	- 10 -
4.3 I	FIT- 611 R.A.S.	- 13 -
4.4	FIT- 612 W.A.S.	- 16 -
4.5 I	FIT- 631 R.A.S.	- 19 -
4.6 I	FIT- 621 R.A.S.	- 22 -
4.7 I	FIT- 622 W.A.S.	- 25 -
4.8 I	FIT- 632 W.A.S.	- 28 -
4.9 I	FIT- 750 Filtrate Tank	- 31 -
4.10	FIT- 1091 Service Water	- 34 -
4.11	FIT- 405 Attenuation	- 37 -
4.12	FIT- 946 Fournier Press #1 Polymer Flow	- 40 -
4.13	FIT- 940 Fournier Press #1 Sludge Flow	- 43 -
4.14	FIT- 956 Fournier Press # 2 Polymer Flow	- 46 -
4.15	FIT – 950 Fournier Press #2 Sludge Flow	- 49 -
4.16	FIT 470 Raw Sewage Vortex #1	- 52 -
4.17	FIT- 480 Raw sewage Vortex #2	- 53 -

10-830 Industrial Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.18 FIT-01 White Tail Ridge Pumping Station	- 54 -
4.19 FIT 700 Sludge Flow	- 57 -
4.20 FIT-1180 Final Effluent	- 58 -
Appendix A- Equipment Calibration Certificates	- 59 -

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

1 List of Verified Devices

This letter is to confirm that annual verification on the following devices has been completed. Results of the all verifications are listed below.

ID	Process	Make/Model	Results
FIT-310	Septage Inlet Grinder	E&H/ Promag 53W	Passed
FIT-350	Septage Tank	E&H/ Promag 53P	Passed
FIT-611	R.A.S.	E&H/ Promag 10P	Passed
FIT-612	W.A.S.	E&H/ Promag 10P	Passed
FIT-631	R.A.S.	E&H/ Promag 10P	Passed
FIT-621	R.A.S.	E&H/ Promag 10P	Passed
FIT-622	W.A.S.	E&H/ Promag 10P	Passed
FIT-632	W.A.S.	E&H/ Promag 10P	Passed
FIT-750	Filtrate Tank	E&H/ Promag 10P	Passed
FIT-1091	Service Water	E&H/ Promag 10P	Passed
FIT-405	Attenuation	E&H/ Promag 53P	Passed
FIT-946	Fournier Press #1 Polymer	E&H/ Promag 50P	Passed
FIT-940	Fournier Press#1 Sludge	E&H/ Promag 50W	Passed
FIT-956	Fournier Press #2 Polymer	E&H/ Promag 50P	Passed
FIT-950	Fournier Press#2 Sludge	E&H/ Promag 50W	Passed
FIT-470	Raw Sewage Vortex #1	Siemens/Multiranger200	Passed
FIT-480	Raw Sewage Vortex #1	Siemens/Multiranger200	Passed
FIT-01	White Tail Ridge	E&H/ Promag 10	Passed
FIT-700	Sludge Flow	Rosemount/8712	Passed
FIT-1180	Final Effluent	Siemens/OCM III	Passed

Signed by Field Technician:

Tim Stewart

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

2 Equipment Used

The following equipment was used to perform the calibrations:

Fluke 725 Multifunction Process Calibrator used to measure current and pressure.

Level Simulator for the Flume Flow Meters

Endress and Hauser FieldCheck for Magnetic Flow Meters

3 Procedures Used

To verify the equipment standard verification procedures developped by the Township were used and standard industry practice.

3.1 Flowmeter Verification

Verification, Magnetic Flow Meter:

The verification of Endress & Hauser Flow measuring devices (the device under test) are checked for the following characteristic values:

1. Functionality and deviation in flow measurement.

2. Deviation in the current and frequency outputs in reference to the flow rate data determined by the measuring device.

<u>Measuring devices</u>: The verification system consists of the FlowCheck flow simulator, the Simubox and the appropriate connection cables.

FieldCheck: The FieldCheck flow simulator generates the flow simulation signals and processes the measured values sent back from the transmitter.

Simubox: The Simubox ensures that the FieldCheck simulation signal are correctly converted in the transmitter, by comparing the measurements returned from the transmitter to data stored within the Simubox for various parameters (Electromagnetic Field vs. Flow, Flow vs. Current, and various other parameters important in verifying the proper functionally of the device under test.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Verification of Flume Flow Meters:

By use of a mechanical level simulating tool installed in the Parshall Flume an exact level can be simulated causing the transmitter to display flow based on the simulator adjusted level.

Shown below is a picture of a simple level simulator used to simulate flows/levels in a Parshall Flume.

By adjusting the reflector upward from the bottom ridge of the base, which will sit on the floor of the flume directly under the level sensor, the flow meter will transmit and display the flow proportional to the simulated level. In this case a 24inch Parshall flume with the simulator set to 240mm can be verified against the chart on the next page. The flow on the transmitter should be comparable to 156.4 l/s.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

FLOW CHART											
			E INSTRU		NC.						
		24*	Parshal]	l Flume							
Formula:	Q = KH^n.										
FORMUIA.		= Flow	in Liter	rs per S	econd						
		= 0.031		o per o	coond.						
H = Head in Millimeters.											
		= 1.550									
H maximum		Millime									
H increme	nt: 5 Mill	Limeters									
mm	L/S	mm	L/S	mm	L/S	mm	L/S				
5,000	0.3875	195.0	113.4	385.0	325.4	575.0	605.9				
10.00	1.135	200.0	117.9	390.0	331.9	580.0	614.1				
15.00		205.0	122.5	395.0	338.6	585.0	622.3				
20.00		210.0		400.0		590.0	630.6				
25.00		215.0		405.0		595.0	638.9				
30.00		220.0	136.7			600.0					
35.00			141.5			605.0					
40.00		230.0	146.4		372.3		664.0				
45.00		235.0 240.0	151.4			615.0 620.0	672.5 681.0				
55.00		245.0	156.4		386.2	625.0	689.5				
60,00		250.0	166.6			630.0	698.1				
65.00		255.0	171.8		407.3		706.7				
70.00		260.0	177.1		414.4		715.3				
75.00		265.0		455.0	421.5		724.0				
80.00		270.0		460.0		650.0	732.7				
85.00	31.30	275.0	193.1		436.0	655.0	741.5				
90.00	34.20	280.0	198.6	470.0	443.3	660.0	750.2				
95.00	37.19	285.0	204.1	475.0	450.6	665.0	759.1				
100.0	40.26	290.0	209.7	480.0	458.0	670.0	767.9				
105.0		295.0	215.3			675.0	776.8				
110.0		300.0	221.0		472.8		785.8				
115.0		305.0	226.8		480.3		794.8				
120.0		310.0	232.6		487.9		803.8				
125.0		315.0	238.4			695.0	812.8				
130.0		320.0	244.3		503.1		821.9				
135.0		325.0	250.2		510.8		831.0				
140.0		330.0	256.2	520.0 525.0	518.5 526.2	710.0	840.2 849.3				
150.0		340.0	268.4			720.0	858.6				
155.0		345.0	274.5		541.8		867.8				
160.0		350.0	280.7		549.7		877.1				
165.0		355.0	286.9		557.6		886.5				
170.0		360.0		550.0	565.6		895.8				
175.0		365.0		555.0	573.5		905.2				
180.0		370.0		560.0	581.6		914.7				
185.0		375.0	312.4		589.6						
190.0	108.9	380.0	318.8	570.0	597.7						

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4 Instrument Verification

See the following pages of reports for individual equipment.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.1 FIT- 310 Septage Inlet Grinder

DTM Version: 3.33.00

Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
Order code	Tag Name
PROMAG 53 W DN100	1.2931 - 1.2931
Device type	K-Factor
E309B116000	6
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
01/27/2021	05:13 PM
Vertilication date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.53 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details		
240223	8784351		
Production number	Production number		
1.07.10	1.00.01		
Software Version	Software Version		
03/2020	03/2020		
Last Calibration Date	Last Calibration Date		

Date	
Overall results:	

Operator's Sign

Inspector's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

1) Prerequisite is an additional proof of electrode integrity with a high voltage test.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 53 W DN100	K-Factor	1.2931 - 1.2931
Serial number	E309B116000	Zero point	6
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertilication date	01/27/2021	Verification time	05:13 PM

Verification Flow end value (100 %): 4633.180 m3/d Flow speed 6.83 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	231.659 m3/d (5%)	1.09 %	-0.44 %
		463.318 m3/d (10.0%)	0.79 %	-0.16 %
		2316.590 m3/d (50.0%)	0.56 %	-0.09 %
		4633.180 m3/d (100%)	0.53 %	-0.08 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.005 mA
		4.800 mA (5%)	0.05 mA	-0.005 mA
		5.600 mA (10.0%)	0.05 mA	-0.017 mA
		12.000 mA (50.0%)	0.05 mA	-0.004 mA
		20.000 mA (100%)	0.05 mA	0.003 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	5.000 ms	0.00014.250 ms	7.891 ms
	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	0.000 mV

Legend of symbols				
· · · · · · · · · · · · · · · · · · ·	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 53 W DN100	K-Factor	1.2931 - 1.2931
Serial number	E309B116000	Zero point	6
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertilication date	01/27/2021	Verification time	05:13 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	3270.60 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
	VOLUME		Passive/Negativ		
Terminal 24/25	FLOW	0.004 m3/P	e	20.00 ms	

Actual System Ident.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.2 FIT- 350 Septage Tank**

Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT350
Order code	Tag Name
PROMAG 53 P DN100	1.2918 - 1.2918
Device type	K-Factor
E60E6616000	2
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
01/27/2021	05:04 PM
Vertification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT350
Device type	PROMAG 53 P DN100	K-Factor	1.2918 - 1.2918
Serial number	E60E6616000	Zero point	2
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertilication date	01/27/2021	Verification time	05:04 PM

Verification Flow end value (100 %): 2714.336 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	135.717 m3/d (5%)	1.50 %	-0.41 %
	1 subjective	271.434 m3/d (10.0%)	1.00 %	-0.44 %
		1357.168 m3/d (50.0%)	0.60 %	-0.06 %
~~~~		2714.336 m3/d (100%)	0.55 %	-0.01 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.005 mA
	our chi oupur i	4.800 mA (5%)	0.05 mA	-0.005 mA
		5.600 mA (10.0%)	0.05 mA	-0.016 mA
		12.000 mA (50.0%)	0.05 mA	-0.001 mA
		20.000 mA (100%)	0.05 mA	0.005 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
<	Coll Curr. Rise	5.000 ms	0.00014.250 ms	6.254 ms
	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	3.272 mV

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT350
Device type	PROMAG 53 P DN100	K-Factor	1.2918 - 1.2918
Serial number	E60E6616000	Zero point	2
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertilication date	01/27/2021	Verification time	05:04 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	4320.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.008 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.3 FIT- 611 R.A.S.** 

## DTM Version: 3.33.00 Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-611
Order code	Tag Name
PROMAG 10 P DN150	1.0042 - 1.0042
Device type	K-Factor
E6085316000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	12:42 PM
Verification date	Vertification time

### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details	
240223	8784351	
Production number	Production number	
1.07.10	1.00.01	
Software Version	Software Version	
03/2020	03/2020	
Last Calibration Date	Last Calibration Date	

-----

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-611
Device type	PROMAG 10 P DN150	K-Factor	1.0042 - 1.0042
Serial number	E6085316000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	12:42 PM

Verification Flow end value ( 100 % ): 6107.256 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
<b>/</b>	Amplifier	305.363 m3/d (5%)	1.60 %	-0.22 %
		610.726 m3/d (10.0%)	1.10 %	0.30 %
		3053.628 m3/d (50.0%)	0.70 %	-0.10 %
		6107.256 m3/d (100%)	0.65 %	-0.08 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.002 mA
		4.800 mA (5%)	0.05 mA	0.003 mA
		5.600 mA (10.0%)	0.05 mA	0.002 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	0.009 mA
		20.000 mA (100%)	0.05 mA	0.017 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
<ul> <li>Image: A set of the set of the</li></ul>	Coll Curr. Rise	83.300 ms	20.00083.300 ms	66.711 ms
	Coll Curr. Stability		_	_

Legend of symbols				
	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

#### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-611
Device type	PROMAG 10 P DN150	K-Factor	1.0042 - 1.0042
Serial number	E6085316000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertfication date	01/27/2021	Verification time	12:42 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	5000.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.4 FIT- 612 W.A.S.** 

## Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-612
Order code	Tag Name
PROMAG 10 P DN80	1.0337 - 1.0337
Device type	K-Factor
E6086D16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	01:39 PM
Vertfication date	Vertilication time

### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie

within +/- 1% of the original calibration. 1)

Operator's Sign

The calibration of the Fieldcheck test system is fully traceable to national standards.



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-612
Device type	PROMAG 10 P DN80	K-Factor	1.0337 - 1.0337
Serial number	E6086D16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:39 PM

Verification Flow end value ( 100 % ): 1737.175 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	86.859 m3/d (5%)	1.60 %	-0.40 %
		173.717 m3/d (10.0%)	1.10 %	-0.16 %
		868.588 m3/d (50.0%)	0.70 %	-0.05 %
		1737.175 m3/d (100%)	0.65 %	0.00 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.000 mA
		4.800 mA (5%)	0.05 mA	-0.001 mA
		5.600 mA (10.0%)	0.05 mA	-0.001 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	-0.001 mA
		20.000 mA (100%)	0.05 mA	-0.001 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
<ul> <li>Image: A second s</li></ul>	Coll Curr. Rise	50.000 ms	13.34050.000 ms	43.229 ms
	Coll Curr. Stability		_	_

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-612
Device type	PROMAG 10 P DN80	K-Factor	1.0337 - 1.0337
Serial number	E6086D16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:39 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	864.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.005 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.5 FIT- 631 R.A.S.** 

# **Flowmeter Verification Certificate Transmitter**

Page 1/3

Customer	Plant
	FIT-631
Order code	Tag Name
PROMAG 10 P DN150	1.016 - 1.016
Device type	K-Factor
E608FE16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	01:30 PM
Vertification date	Verification time

#### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

Date

Inspector's Sign

Overall results: The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-631
Device type	PROMAG 10 P DN150	K-Factor	1.016 - 1.016
Serial number	E608FE16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:30 PM

Verification Flow end value ( 100 % ): 6107.256 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
<b>/</b>	Amplifier	305.363 m3/d (5%)	1.60 %	-0.57 %
		610.726 m3/d (10.0%)	1.10 %	0.01 %
		3053.628 m3/d (50.0%)	0.70 %	-0.11 %
		6107.256 m3/d (100%)	0.65 %	-0.03 %
<i>_</i>	Current Output 1	4.000 mA (0%)	0.05 mA	0.006 mA
		4.800 mA (5%)	0.05 mA	-0.001 mA
		5.600 mA (10.0%)	0.05 mA	-0.002 mA
		12.000 mA (50.0%)	0.05 mA	-0.006 mA
		20.000 mA (100%)	0.05 mA	-0.008 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
<ul> <li>Image: A set of the set of the</li></ul>	Coll Curr. Rise	83.300 ms	20.00083.300 ms	66.816 ms
	Coll Curr. Stability		_	_

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-631
Device type	PROMAG 10 P DN150	K-Factor	1.016 - 1.016
Serial number	E608FE16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:30 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	5000.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.6 FIT- 621 R.A.S.** 

# Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-621
Order code	Tag Name
PROMAG 10 P DN150	1.0176 - 1.0176
Device type	K-Factor
E6087E16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	01:49 PM
Vertification date	Vertilication time

### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

Date

Inspector's Sign

Overall results: The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. ¹⁾

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-621
Device type	PROMAG 10 P DN150	K-Factor	1.0176 - 1.0176
Serial number	E6087E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:49 PM

Verification Flow end value ( 100 % ): 6107.256 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	305.363 m3/d (5%)	1.60 %	-0.69 %
		610.726 m3/d (10.0%)	1.10 %	-0.27 %
		3053.628 m3/d (50.0%)	0.70 %	-0.13 %
		6107.256 m3/d (100%)	0.65 %	-0.04 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.004 mA
		4.800 mA (5%)	0.05 mA	-0.003 mA
		5.600 mA (10.0%)	0.05 mA	-0.004 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	-0.009 mA
		20.000 mA (100%)	0.05 mA	-0.014 mA
	Pulse Output 1		_	-
	1	Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	83.300 ms	20.00083.300 ms	66.399 ms
	Coll Curr. Stability		_	_

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-631
Device type	PROMAG 10 P DN150	K-Factor	1.016 - 1.016
Serial number	E608FE16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertfication date	01/27/2021	Verification time	01:30 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	5000.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.7 FIT- 622 W.A.S.** 

## Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-622
Order code	Tag Name
PROMAG 10 P DN80	1.0288 - 1.0288
Device type	K-Factor
E608FC16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	01:59 PM
Vertification date	Vertilication time

#### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

Date Overall results:

Inspector's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-622
Device type	PROMAG 10 P DN80	K-Factor	1.0288 - 1.0288
Serial number	E608FC16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:59 PM

Verification Flow end value ( 100 % ): 1737.175 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	86.859 m3/d (5%)	1.60 %	-0.45 %
		173.717 m3/d (10.0%)	1.10 %	0.04 %
~~~		868.588 m3/d (50.0%)	0.70 %	-0.10 %
		1737.175 m3/d (100%)	0.65 %	-0.01 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.008 mA
		4.800 mA (5%)	0.05 mA	0.002 mA
		5.600 mA (10.0%)	0.05 mA	0.003 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	0.004 mA
		20.000 mA (100%)	0.05 mA	0.010 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
×	Coll Curr. Rise	50.000 ms	13.34050.000 ms	43.099 ms
	Coll Curr. Stability		_	-

Legend of symbols				
	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-622
Device type	PROMAG 10 P DN80	K-Factor	1.0288 - 1.0288
Serial number	E608FC16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	01:59 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	864.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.005 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.8 FIT- 632 W.A.S.**

Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-632
Order code	Tag Name
PROMAG 10 P DN80	1.055 - 1.055
Device type	K-Factor
E6088416000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	02:14 PM
Vertification date	Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-632
Device type	PROMAG 10 P DN80	K-Factor	1.055 - 1.055
Serial number	E6088416000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	02:14 PM

Verification Flow end value (100 %): 1737.175 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	86.859 m3/d (5%)	1.60 %	-0.88 %
		173.717 m3/d (10.0%)	1.10 %	-0.70 %
		868.588 m3/d (50.0%)	0.70 %	-0.11 %
		1737.175 m3/d (100%)	0.65 %	-0.02 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.001 mA
		4.800 mA (5%)	0.05 mA	0.000 mA
		5.600 mA (10.0%)	0.05 mA	0.001 mA
		12.000 mA (50.0%)	0.05 mA	0.002 mA
		20.000 mA (100%)	0.05 mA	0.005 mA
	Pulse Output 1		_	_
	1	Start value	Limits range	Measured value
	Test Sensor			
 Image: A set of the set of the	Coll Curr. Rise	50.000 ms	13.34050.000 ms	43.307 ms
	Coll Curr. Stability		_	_

	Legend of symbols				
[×		?	!
[Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-632
Device type	PROMAG 10 P DN80	K-Factor	1.055 - 1.055
Serial number	E6088416000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertfication date	01/27/2021	Verification time	02:14 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	864.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.005 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.9 FIT- 750 Filtrate Tank

DTM Version: 3.33.00 Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant	
	FIT-750	
Order code	Tag Name	
PROMAG 10 P DN80	1.1234 - 1.1234	
Device type	K-Factor	
E6086E16000	0	
Serial number	Zero point	
V1.03.00		
Software Version Transmitter	Software Version I/O-Module	
01/27/2021	02:26 PM	
Vertilication date	Verification time	

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----Date Overall results:

Inspector's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-750
Device type	PROMAG 10 P DN80	K-Factor	1.1234 - 1.1234
Serial number	E6086E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	02:26 PM

Verification Flow end value (100 %): 1737.175 m3/d Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	86.859 m3/d (5%)	1.60 %	-0.63 %
		173.717 m3/d (10.0%)	1.10 %	-0.24 %
~~~		868.588 m3/d (50.0%)	0.70 %	-0.14 %
		1737.175 m3/d (100%)	0.65 %	-0.04 %
	Current Output 1	4.000 mA (0%)	0.05 mA	0.003 mA
		4.800 mA (5%)	0.05 mA	0.002 mA
		5.600 mA (10.0%)	0.05 mA	0.002 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	0.003 mA
		20.000 mA (100%)	0.05 mA	0.008 mA
	Pulse Output 1		-	_
		Start value	Limits range	Measured valu
	Test Sensor			
×	Coll Curr. Rise	50.000 ms	13.34050.000 ms	43.802 ms
	Coll Curr. Stability		_	-

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-750
Device type	PROMAG 10 P DN80	K-Factor	1.1234 - 1.1234
Serial number	E6086E16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	02:26 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/d	4320.00 m3/d	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.005 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



### 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.10 FIT- 1091 Service Water

#### DTM Version: 3.33.00 Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-1091
Order code	Tag Name
PROMAG 10 P DN150	1.0062 - 1.0062
Device type	K-Factor
E608FD16000	0
Serial number	Zero point
V1.03.00	
Software Version Transmitter	Software Version I/O-Module
01/27/2021	02:37 PM
Verification date	Verification time

#### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

-----Date Overall results:

Inspector's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-1091
Device type	PROMAG 10 P DN150	K-Factor	1.0062 - 1.0062
Serial number	E608FD16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version VO-Module	
Vertilication date	01/27/2021	Verification time	02:37 PM

Verification Flow end value ( 100 % ): 70.686 l/s Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	3.534 l/s (5%)	1.60 %	-0.16 %
		7.069 l/s (10.0%)	1.10 %	0.07 %
		35.343 1/6 (50.0%)	0.70 %	-0.10 %
		70.686 l/s (100%)	0.65 %	-0.08 %
<i>_</i>	Current Output 1	4.000 mA (0%)	0.05 mA	0.000 mA
		4.800 mA (5%)	0.05 mA	0.001 mA
		5.600 mA (10.0%)	0.05 mA	0.001 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	0.005 mA
		20.000 mA (100%)	0.05 mA	0.012 mA
	Pulse Output 1	-		
		Start value	Limits range	Measured value
	Test Sensor			
×	Coll Curr. Rise	83.300 ms	20.00083.300 ms	66.477 ms
	Coll Curr. Stability		_	-

	Legend of symbols				
[		×		?	!
[	Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

### FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-1091
Device type	PROMAG 10 P DN150	K-Factor	1.0062 - 1.0062
Serial number	E608FD16000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version VO-Module	
Vertilication date	01/27/2021	Verification time	02:37 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/s	50.00 l/s	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.025 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.



10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.11 FIT- 405 Attenuation** 

# Flowmeter Verification Certificate Transmitter

Page 1/3

Customer	Plant
	FIT-405
Order code	Tag Name
PROMAG 53 P DN200	1.0223 - 1.0223
Device type	K-Factor
E6088316000	11
Serial number	Zero point
V2.03.00	V1.05.03
Software Version Transmitter	Software Version I/O-Module
01/27/2021	05:25 PM
Vertification date	Vertilication time

#### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

#### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	FIT-405
Device type	PROMAG 53 P DN200	K-Factor	1.0223 - 1.0223
Serial number	E6088316000	Zero point	11
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertication date	01/27/2021	Verification time	05:25 PM

Verification Flow end value ( 100 % ): 125.664 l/s Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	6.283 l/s (5%)	1.50 %	-0.41 %
		12.566 l/s (10.0%)	1.00 %	-0.11 %
		62.832 l/s (50.0%)	0.60 %	-0.06 %
~~~~		125.664 l/s (100%)	0.55 %	-0.01 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.006 mA
		4.800 mA (5%)	0.05 mA	-0.007 mA
		5.600 mA (10.0%)	0.05 mA	-0.021 mA
		12.000 mA (50.0%)	0.05 mA	-0.003 mA
		20.000 mA (100%)	0.05 mA	0.004 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	13.300 ms	0.00027.625 ms	18.286 ms
√	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	3.269 mV

Legend of symbols				
· · · · · · · · · · · · · · · · · · ·	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	FIT-405
Device type	PROMAG 53 P DN200	K-Factor	1.0223 - 1.0223
Serial number	E6088316000	Zero point	11
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.05.03
Vertilication date	01/27/2021	Verification time	05:25 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/s	150.00 l/s	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	37.854 I/P	Passive/Positive	100.00 ms	

Actual System Ident.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.12 FIT- 946 Fournier Press #1 Polymer Flow

DTM Version: 3.33.00

_

_

Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant	
Order code	Tag Name	
PROMAG 50 P DN25	0.8218 - 0.8218	
Device type	K-Factor	
DA084316000	7	
Serial number	Zero point	
V2.03.00	V1.04.02	
Software Version Transmitter	Software Version I/O-Module	
01/27/2021	03:14 PM	
Vertilication date	Verification time	

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 P DN25	K-Factor	0.8218 - 0.8218
Serial number	DA084316000	Zero point	7
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.02
Vertication date	01/27/2021	Verification time	03:14 PM

Verification Flow end value (100 %): 7068.583 l/h Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	353.429 l/h (5%)	1.50 %	-0.36 %
		706.858 l/h (10.0%)	1.00 %	-0.04 %
		3534.292 l/h (50.0%)	0.60 %	0.00 %
		7058.583 Vh (100%)	0.55 %	0.02 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.004 mA
		4.800 mA (5%)	0.05 mA	-0.003 mA
		5.600 mA (10.0%)	0.05 mA	-0.015 mA
		12.000 mA (50.0%)	0.05 mA	-0.001 mA
		20.000 mA (100%)	0.05 mA	0.004 mA
	Pulse Output 1	-	-	
		Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	2.400 ms	0.0008.750 ms	3.584 ms
√	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	3.268 mV

Legend of symbols				
· · · · · · · · · · · · · · · · · · ·	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 P DN25	K-Factor	0.8218 - 0.8218
Serial number	DA084316000	Zero point	7
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.02
Vertilication date	01/27/2021	Verification time	03:14 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/h	4088.24 l/h	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.757 I/P	Passive/Positive	100.00 ms	

Actual System Ident.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

4.13 FIT- 940 Fournier Press #1 Sludge Flow

DTM Version: 3.33.00

Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
Order code	Tag Name
PROMAG 50 W DN80	0.9282 - 0.9282
Device type	K-Factor
D2012116000	4
Serial number	Zero point
V2.03.00	V1.04.01
Software Version Transmitter	Software Version I/O-Module
01/27/2021	03:23 PM
Vertilication date	Vertilication time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	_03/2020
Last Calibration Date	Last Calibration Date

Date Overall results: Operator's Sign

Inspector's Sign

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 W DN80	K-Factor	0.9282 - 0.9282
Serial number	D2012116000	Zero point	4
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.01
Vertilication date	01/27/2021	Verification time	03:23 PM

Verification Flow end value (100 %): 72.382 m3/h Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	3.619 m3/h (5%)	1.50 %	-0.35 %
		7.238 m3/h (10.0%)	1.00 %	-0.05 %
		36.191 m3/h (50.0%)	0.60 %	-0.02 %
		72.382 m3/h (100%)	0.55 %	0.02 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.004 mA
		4.800 mA (5%)	0.05 mA	-0.002 mA
		5.600 mA (10.0%)	0.05 mA	-0.016 mA
		12.000 mA (50.0%)	0.05 mA	-0.002 mA
		20.000 mA (100%)	0.05 mA	0.003 mA
	Pulse Output 1		_	
		Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	4.200 ms	0.00012.650 ms	5.341 ms
√	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	3.228 mV

Legend of symbols				
· · · · · · · · · · · · · · · · · · ·	×		?	!
Passed	Falled	not tested	not testable	Attention

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 W DN80	K-Factor	0.9282 - 0.9282
Serial number	D2012116000	Zero point	4
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.01
Vertilication date	01/27/2021	Verification time	03:23 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/h	45.42 m3/h	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.008 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.

123.0

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.14 FIT- 956 Fournier Press # 2 Polymer Flow

DTM Version: 3.33.00

_

_

Page 1/3

Flowmeter Verification Certificate Transmitter

Customer	Plant
Order code	Tag Name
PROMAG 50 P DN25	0.8082 - 0.8082
Device type	K-Factor
DA084616000	16
Serial number	Zero point
V2.03.00	V1.04.02
Software Version Transmitter	Software Version I/O-Module
01/27/2021	02:53 PM
Vertilication date	Ventication time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

1) Prerequisite is an additional proof of electrode integrity with a high voltage test.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 P DN25	K-Factor	0.8082 - 0.8082
Serial number	DA084616000	Zero point	16
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.02
Vertilication date	01/27/2021	Verification time	02:53 PM

Verification Flow end value (100 %): 7068.583 l/h Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	353.429 l/h (5%)	1.50 %	-0.37 %
		706.858 l/h (10.0%)	1.00 %	-0.05 %
		3534.292 l/h (50.0%)	0.60 %	0.03 %
		7058.583 Vh (100%)	0.55 %	0.02 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.004 mA
		4.800 mA (5%)	0.05 mA	-0.004 mA
		5.600 mA (10.0%)	0.05 mA	-0.017 mA
		12.000 mA (50.0%)	0.05 mA	-0.002 mA
		20.000 mA (100%)	0.05 mA	0.004 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
	Coll Curr. Rise	2.400 ms	0.0008.750 ms	3.646 ms
	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	3.266 mV

Lege	nd of symbols				
		×	<u> </u>	?	<u>!</u>
	Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 3/3

FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 P DN25	K-Factor	0.8082 - 0.8082
Serial number	DA084616000	Zero point	16
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.02
Vertilication date	01/27/2021	Verification time	02:53 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/h	4088.24 l/h	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.757 I/P	Passive/Positive	100.00 ms	

Actual System Ident.

123.0

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.15 FIT – 950 Fournier Press #2 Sludge Flow**

DTM Version: 3.33.00

PROMAG 50 W DN80

Software Version Transmitter

Customer

Order code

Device type D4010116000

Serial number

01/27/2021

Vertfication date

V2.03.00

Page 1/3

Flowmeter Verification Certificate Transmitter

Plant ------Taq Name 1.0487 - 1.0487 K-Factor 0 Zero point V1.04.01 Software Version I/O-Module 03:03 PM Verification time

Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.55 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

1) Prerequisite is an additional proof of electrode integrity with a high voltage test.

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 W DN80	K-Factor	1.0487 - 1.0487
Serial number	D4010116000	Zero point	0
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.01
Vertication date	01/27/2021	Verification time	03:03 PM

Verification Flow end value (100 %): 72.382 m3/h Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	3.619 m3/h (5%)	1.50 %	-0.29 %
		7.238 m3/h (10.0%)	1.00 %	0.01 %
		36.191 m3/h (50.0%)	0.60 %	0.03 %
~~~		72.382 m3/h (100%)	0.55 %	0.07 %
	Current Output 1	4.000 mA (0%)	0.05 mA	-0.004 mA
		4.800 mA (5%)	0.05 mA	-0.004 mA
		5.600 mA (10.0%)	0.05 mA	-0.018 mA
		12.000 mA (50.0%)	0.05 mA	-0.002 mA
		20.000 mA (100%)	0.05 mA	0.003 mA
	Pulse Output 1		_	_
		Start value	Limits range	Measured value
	Test Sensor			
< <u></u>	Coll Curr. Rise	4.200 ms	0.00012.650 ms	4.890 ms
	Coll Curr. Stability		_	_
	Electrode Integrity	mV	0.0300.000 mV	0.000 mV

Legend of symbols				
	×		?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

# FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 50 W DN80	K-Factor	1.0487 - 1.0487
Serial number	D4010116000	Zero point	0
Software Version Transmitter	V2.03.00	Software Version I/O-Module	V1.04.01
Vertilication date	01/27/2021	Verification time	03:03 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 m3/h	45.42 m3/h	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.008 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.

123.0

**CapitalControls** 

# 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.16 FIT 470 Raw Sewage Vortex #1

Flow Meter

Instrument Calibration/Verification Report

Date: January 27th 2021

As Found Results

Max head= .765 m

Flow Exponent U0=1.522

O.C.W.A. inkenweeder -9623	Manufacturer Model	Siemens Multi ranger 200	
inkenweeder		Multi ranger 200	
		Multi ranger 200	
-9623			
	Order Code		
	Serial Number	PBD/B5180380	
vart	Location	W.W.T.P.	
Controls	Output	4-20 mA	
-1999	Process	Raw Sewage Flow	
	Tag ID	FIT-470	
	Controls	vart Location Controls Output -1999 Process	vart Location W.W.T.P. Controls Output 4-20 mA -1999 Process Raw Sewage Flow

Level stand for simulating levels

4-20 mA= 0 - 39984 m3/day

Test Procedure				Pass/Fail Criteria: 5% of Full Scale Errors are expressed in percentage of Full Scale
Level Simulation		Flow	ate units are m3/da	
Simulated Height	3 cm	5.5 cm	27 cm	]
Calculated Flow	266	679	8008	]
Transmitter Value	243	695	8231	1
Error	0.06%	0.04%	0.56%	]
Expected mA	4.11	4.27	7.20	]
Actual mA	4.10	4.30	7.28	1
Error	0.06%	0.18%	0.50%	1

#### Comments

The instrument under test is within error tolerance and has passed the annual calibration.

**CapitalControls** 

# 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.17 FIT- 480 Raw sewage Vortex #2**

Flow Meter

Instrument Calibration/Verification Report

Date: January 27th 2021

As Found Results

Client Details			Instrumen	t Details			
			Manufactu	irer	Siemens		
Customer	Almonte O.C.W.A.						
Contact	Kurtis Winkenweeder		Model		Multi ranger	200	
	613-257-9623		Order Cod	e			
			Serial Num	iber	PBD/B51803	95	
Calibrations by:	Tim Stewart		Location		W.W.T.P.		
	Capital Controls		Output		4-20 mA		
	613-248-1999	Process			Raw Sewage Flow		
			Tag ID		FIT-480		
Meters Range at zero hea Max head= .765 i						rial # vel sta	8759025 nd for simulating levels
Flow Exponent U	0=1.522						
			4-20 mA= 0	- 39984 m3/da	y		
					Pass/Fail Crit	teria:	5% of Full Scale
Test Procedure					Errors are exp	presse	d in percentage of Full Scale
Level Simulation			Flow rate	units are m3/d	ay		_
				07.0	7		
Simulated height	5.4 cm	6.7 cm		27.9 cm			

Calculated Flow	660	924	8657
Transmitter Value	710	994	8904
Error	0.13%	0.18%	0.62%
Expected mA	4.26	4.39	7.46
Actual mA	4.28	4.36	7.58
Error	0.13%	0.19%	0.13%

#### Comments

The instrument under test is within error tolerance and has passed the annual calibration.



# 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 4.18 FIT-01 White Tail Ridge Pumping Station

DTM Version: 3.33.00			
Flowmeter	Verification	Certificate	Transmitter

Page 1/3

Customer Plant Tag Name Order code 1.0161 - 1.0161 PROMAG 10 ? DN80 K-Factor Device type DC068219000 0 Zero point Serial number V1.03.00 Software Version I/O-Module Software Version Transmitter 01/27/2021 07:32 PM Verification time Vertfication date

### Verification result Transmitter: Passed

Test item	Result	Applied Limits
Amplifier	Passed	Basis: 0.65 %
Current Output 1	Passed	0.05 mA
Pulse Output 1	Not tested	0 P
Test Sensor	Passed	

FieldCheck Details	Simubox Details
240223	8784351
Production number	Production number
1.07.10	1.00.01
Software Version	Software Version
03/2020	03/2020
Last Calibration Date	Last Calibration Date

-----Date

Inspector's Sign

Overall results:

The achieved test results show that the instrumment is completely functional, and the measuring results lie within +/- 1% of the original calibration. 1)

-----

The calibration of the Fieldcheck test system is fully traceable to national standards.

Operator's Sign

1) Prerequisite is an additional proof of electrode integrity with a high voltage test.



**CapitalControls** 

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 2/3

### FieldCheck - Result Tab Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 10 ? DN80	K-Factor	1.0161 - 1.0161
Serial number	DC068219000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertilication date	01/27/2021	Verification time	07:32 PM

Verification Flow end value ( 100 % ): 20.106 l/s Flow speed 4.00 m/s

Passed / Failed	Test item	Simul. Signal	Limit Value	Deviation
	Test Transmitter			
	Amplifier	1.005 l/s (5%)	1.60 %	-0.31 %
		2.011 l/s (10.0%)	1.10 %	-0.34 %
		10.053 l/s (50.0%)	0.70 %	-0.11 %
		20.106 l/s (100%)	0.65 %	-0.05 %
<i>_</i>	Current Output 1	4.000 mA (0%)	0.05 mA	-0.006 mA
		4.800 mA (5%)	0.05 mA	-0.010 mA
		5.600 mA (10.0%)	0.05 mA	-0.011 mA
<hr/>		12.000 mA (50.0%)	0.05 mA	-0.006 mA
		20.000 mA (100%)	0.05 mA	0.013 mA
	Pulse Output 1	-		
		Start value	Limits range	Measured value
	Test Sensor			
<ul> <li>Image: A second s</li></ul>	Coll Curr. Rise	50.000 ms	13.33350.000 ms	43.177 ms
	Coll Curr. Stability		_	_

Legend of symbols				
	×	_	?	!
Passed	Falled	not tested	not testable	Attention

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

#### Page 3/3

# FieldCheck: Parameters Transmitter

Customer		Plant	
Order code		Tag Name	
Device type	PROMAG 10 ? DN80	K-Factor	1.0161 - 1.0161
Serial number	DC068219000	Zero point	0
Software Version Transmitter	V1.03.00	Software Version I/O-Module	
Vertfication date	01/27/2021	Verification time	07:32 PM

Curent Output	Assign	Current Range	Value 0_4mA	Value 20 mA	
Terminal 26/27	VOLUME FLOW	4-20 mA activ	0.0 l/s	10.00 l/s	
Pulse Output	Assign	Pulse Value	Output signal	Pulse width	
Terminal 24/25	VOLUME FLOW	0.001 m3/P	Passive/Positive	100.00 ms	

Actual System Ident.

115.0

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.19 FIT 700 Sludge Flow** 

Flow Meter

Instrument Calibration/Verification Report

Date: January 27th 2021

As Found Results

Client Details		Instrument Details		
Customer	Almonte O.C.W.A.	Manufacturer	Rosemount	
Contact	Kurtis Winkenweeder	Model	8712	
	613-257-9623	Serial Number	318926	
		Location	W.W.T.P.	
librations by:	Tim Stewart	Output	4-20 mA	
	Capital Controls	Process	Sludge Flow	
	613-248-1999	Tag ID	FIT-700	

#### **Programming Paramaters**

Units Full Scale Cal Factor I/min 2617 I/min 0946405609424005#

# Calibration EquipmentMakeFlukeRosemountModel7258714DSerial #875902521040206

4-20 mA = 0-2617 l/min

Errors are expressed in percentage of Full Scale

Test Procedure Simulation using flow tube simualtor					Pass/Fail (	Criteria:	5% of Ful	l Scale	
								Avg Error	
Simulated Value	0.00 ft/s		3.00 ft/s		10.00 ft/s		30.00 ft/s		
Instrument Display	0.00 ft/s		3.00 ft/s		10.00 ft/s		30.00 ft/s		
Display Error	0.00%		0.00%		0.00%		0.00%	0.00%	
Expected mA Output	4.00 mA		5.60 mA		9.33 mA		20.00 mA		
Actual mA Output	4.02 mA		5.62 mA		9.35 mA		20.02 mA		
mA Output Error	0.13%		0.13%		0.13%		0.13%	0.13%	

#### Comments

The instrument under test is within error tolerance and has passed the annual calibration.

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **4.20 FIT-1180 Final Effluent** 

Flow Meter

Instrument Calibration/Verification Report

Date: January 27th 2021

As Found Results

Client Details		Instrument Detail	s		
		Manufacturer	Siemens		
Customer	Almonte O.C.W.A.		Transmitter		Sensor
Contact	Kurtis Winkenweeder	Model	Siemens		Siemens
	613-257-9623	Order Code	OCM III		XRS-5
		Serial Number	PBD		
Calibrations by:	Tim Stewart	Location	Mississippi Mills		
	Capital Controls	Output	4-20 mA		
	613-248-1999	Process	Plant Effluent		
		Tag ID	FIT- 1180		
Ratiometric Meters Range at zero hea Max head= 51.20	619 cm	B.D. = 30.48 cm			725 8759025 Ind for simulating levels
Flow Exponent U	J=1.522	4-20 m/	4= 0 - 21554.5 m3/day		
			Pass	/Fail Criteria:	5% of Full Scale
Test Procedure			Erro	rs are expresse	d in percentage of Full Scal
Level Simulation		Flow ra	te units are m3/day		
Actual Height	13 cm	13.85 cm	14.49 cm	14.91 cn	n
Calculated Flow	2583	2842	3049	3188	
Transmitter Value	e 2674	2743	3136	3274	
-					

0.40%

6.26

6.32

0.25%

0.39%

6.37

6.43

0.38%

Comments

Error

Error

Expected mA

Actual mA

0.42%

5.92

5.98

0.38%

The instrument under test is within error tolerance and has passed the annual calibration.

0.46%

6.11

6.03

0.50%

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

# 10-830 Industrial Ave. Ottawa. ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997 **Appendix A- Equipment Calibration Certificates**



www.pylonelectronics.com

- ---- tor cellog

Fage 1 of 1

Pylon Electronics Inc. 147 Coldmade Hoad Ottawa, ON K2E 7E9

### CERTIFICATE OF CALIBRATION

Description MULTI FUNCTION PROCESS Model Number 725 Instrument Id N/A Manufacturer FLUKE Customer Name CAPITAL CONTROLS

Work Order N0847119 Serial Number 8759025 Cal Procedure 667581 Cal Date 28 Apr 2020 Recall Cycle 57 Weeks Next Cal Date 28 Apr 2021 Purchase Order CCI804-PL

Assiet #

240-1155

240-120

Calibration Environment: Temperature 23.2 °C

Relative Humidity 2.4 SRH

Received Condition: Within Tolerance

Completed Condition: Within Tolerance

#### Standards Used to Establish Traceability

Instrument Type CALIBRATOR WITH SCOPE OPTION MULTIMETER

Model 5522A-SCI100 34401A

Cal Due Date 25 Sep 2020 29 Jan 2021

Pylon cartifies that, at the time of calibration, the descellated instrument means or exceeds all of the specifications defined on the Test Data Shee, (TDS), unless Obstrains indicated. The Cartificate received and completed model for and the TDS appendications are based on the procedures (a) and/or specific atoms (a) reformed on the TDS onloss otherwise indicated. Any statement of every same is made without taking measurement uncertainty into account and is based on the instrument's performance's sains) the test limits deconserved on the test data sheet

The above listed in summin loss term radio using standards that are traceable to the International System of Units (SI) through a National Metrological insulute (such as NRC of NIST'). Pylon's quality system metti the requirements of ISO/IEC 17025(2005). Unless of new suspectfuel, Tylon maintains a minimum of a 441~nt is between the equipment under test and the measurement system.

This report consists of two parts with separate gogs numbering schemes; the Certificate of Caldentics and the Lesi Data Shee: (TDF), Copyright of this report is owned by the isoning laboratory and may not be reproduced, other than in full, except with the prior written per mission of the issue of t They date As Found and Final (as left) results are the same to these operated other wise. Certificate remarks identify if adjustments were performed.

					Discut.
Mateologist : 171		Quality Associates:	301	Date of Tssue:29 Apr 2020	+003 (lav 15
HALIFAX	MONTREAL	OTTAWA	TORONTO	EDMONTON	CALGARY

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

#### 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

del: storne	er ID.: N/A Surer: FLUKE ar: CAPITAL CONTROLS	Serial: Procedure: Proc. Rov.: Cal Date:	N0847119 8759025 667581 01-Apr-2014 28-Apr-2020		
TEST	HohitikitiSmplanjit)ala(TÖS)Eise TOS:725 FA)	kanola Zuenge 151	RESUL	07 Gep 2016 TS	
REF.	TEST DESCRIPTION	MIN	AS FOUND	FINAL	MAX
P. 25	UPPER DISPLAY VOLTAGE MEASUREMENT 1	TESTS			9
	APPLIED (V)	V	V		V
	0	-0.002	0.000		0.002
	15	14.995	16.000		15.008
	30	29.992	30.002		30.000
P.26	LOWER DISPLAY mV/TC MEASUREMENT TES	TS			
	APPLIED (V)	V	V	v	v
	0.00 m	-0.02 m	0.00 m		0.02 m
	45.00 m	44.97 m	44.99 m		45.03 r
	90.00 m	89.96 m	89.99 m		90.04 r
P. 27	LOWER DISPLAY VOLTAGE MEASUREMENT	TESTS			
	APPLIED (V)	V	v	v	V
	0.000	-0.002	C 000		0.002
	10.000	9.996	9.999		10.004
	20.000	19.994	19.999		20.006
. 28	UPPER DISPLAY MA MEASUREMENT TESTS				
	APPLIED (A)	٨	A	Α	A
	4.000 m	3.997 m	3.999 m		4.003 m
	12.000 m	11.995 m	12.000 m		12.005 r
	24.000 m	23.993 m	24.004 m		24.007 r

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

#### 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

escript lodel:	ion: MULTI FUNCTION PROCESS CALIBIWa 725 Seri		N0847119 8759025		
TEST			RESU	LTS	
BEF.	TEST DESCRIPTION	MEN	AS FOUND	FINAL	MAX
P. 29	LOWER DISPLAY mA MEASUREMENT TESTS				
	APPLIED (A)	Δ	A	А	A
	4.000 m	3.997 m	4.000 m		4.003 m
	12.000 m	11.995 m	12.000 m		12.005 m
	24.000 m	23.993 m	24.000 m		24.007 m
P. 30	LOWER DISPLAY FREQUENCY MEASUREMENT T	ESTS			
	APPLIED FRG (Hz)	Hz	Hz	Ez	Hz
	1 V P-P SQ 10 k	9.96 k	10.00 k		10.02 k
P. 31	LOWER DISPLAY FREQUENCY SOURCE TEST				
	TLOUTPUT (Hz)	Hz	112	Hz	Hz
	1C k	0.075 k	10.000 k		10.025 k
P. 32	LOWER DISPLAY 4-W RESISTANCE MEASUREME	NT TESTS			_
	APPLIED (Ω)	Ω	Ω	63	Ω
	15	14.90	14.98		15.10
	350	349.90	349.97		350.10
	500	499.5	499.9		500.5
	1500	1499.5	1500.0		1500.5
	3200	3199.0	31.09.8		3201.0
P. 33	LOWER DISPLAY 3-WIRE RTD MEASUREMENT TH	STS			
	APPLIED (Ω)	12	Ω	Ω	12
	350	349.80	349 92		350.20

#### 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

idel:	on: MULTI FUNCTION PROCES 725	SS CALIBIWork Seria		N0647119 8759025		
TEST				RESU	LTS	
REF.	TEST DESCRIPTION	J	MIN	AS FOUND	FINAL	MAX
P. 34	LOWER DISPLAY T/C MEASUREME	ENT TESTS				
	APPLIED (°O)	(V)	°C	°C	C°	ĉ
	0	0.000 m	-0.7	0.1		0.7
P. 35	LOWER DISPLAY T/C SOURCE TES	ST				
	APPLIED ( "C)		ĉ	°C	°C	20
	0		-0.7	-0.2		0.7
P. 36	LOWER DISPLAY mA SOURCE TES	STS				
	OUTPUT (A)		Α	Δ	А	A
	4 m	NAME OF A DESCRIPTION OF A	3.9972 m	3.9959 m		4.0028 n
	12 m		11.9956 m	11.9974 m		12.0044
	24 m		23.9932 m	23.9950 m		24,0068
P. 37	LOWER DISPLAY mV SOURCE TES	TS				
	OUTPUT (V)		V	v	v	V
	0.00 m		-0.020 m	0.001 m		0.020 m
	45.00 m		44.970 m	45.003 m		45.030 m
	100.00 m		99.960 m	100.005 m		100.040 (
	LOWER DISPLAY VOLTAGE SOUR	CE TESTS				
	OUTPUT (V)		v	v	v	v
	0.000		-0.002	0.000		0.002
	5.000		4.9970	5.0000		5 C030
	10.000		9.9960	9.9999		10.0040

#### 10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

Page 4 of 4

odel:	725 Seria	al:	8759025	Sector Bar	
			RESU	LTS	
	TEST DESCRIPTION	MIN	AS FOUND	FINAL	MAX
P. 38	LOWER DISPLAY RESISTANCE SOURCE TESTS				
	OUTPUT (Ω)	Ω	Ω	Ω	Ω
	15	14.9	15.1		15.1
	360	359,9	360.1		360.1
	500	409.5	499.8		500.5
	1500	1499.5	1500.2		1500.5
	3200	3199.0	3200.3		3201.0
P. 39	PRESSURE MODULE INPUT				
	(WITH 700 SERIES PRESSURE MODULE)				
	TI DISPLAY SHOWS (PSI)	Pass / Fail	Pass		

CapitalControls

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

001803

# Calibration Certificate Kalibrations-Zertifikat

# FieldCheck

Page 1 of 2 Seite 1 of 2

Production Number Fabrikationsnummer

Serial Number Seriennummer

Manufacturer Hersteller 990B1402000

240223

Endress+Hauser Flowtec AG CH-4153 Reinsch

Date Of Calibration Kalibrierdatum Location

OH Testing Instruction

Prüfenweisung

Test Program Prüforogramm

Test Engineer Prüfer DG-Greenwood

03/03/2020

CalCenter_2 V1.01.10

Riley

Used Test /Calibration Interface Verwendete Prüf-Kei icrierschniltstelle

Used Test-/Calibration Tools Verwandete Prüf-/Kalibrienmittel

> Max. Deviation (Specification) Max. Abweichung (Spezifikation) Current Source Stromouelle

Frequency Source Frequenzgeber

Notes Bemerkungen

0,01% of end value / des Endwertes (20mA)

Keithley DMM2700 due 07/2020 Yokogawa CAL100 due 07/2020

+ 0.02% of signal / des Signals

0,01% of signal / des Signals

The above mentioned calibration tools are traceable to national standards / NIST

Die oben genannten Kallbrienmittel sind rückführbar auf nationale Normale

Date Signature: 03/03/2020,

Chustoper Rily

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

# Calibration Certificate Kalibrations-Zertifikat

FieldCheck			Number / Fabrika iber / Setienourch		240223 960B1402000
Measuring Data On Incoming Messdaten bei der Eingangsp		Rated Value Vorgabowert	Meas. Value Messwert	Limit Value +/- Grenzwert +/-	Pass / Fall Gut/Fehlerhaft
Current Input Strom-Eingeng	mA mA	0.000 20.000	-0.004 20.015	0.005 0.010	Pass/Gut Fail/Fehierhaft
Frequency Input Frequenz: Fingang	Hz Hz	0.0 8000.0	0.0 7999.8	0.0 4.0	Pass/Gut Pass/Gut
Measuring Data After Calibrat Messdaten nach Kalibrierung	ion	Rated Value Vorgabewart	Meas. Value Messwert	Limit Value +/- Grenzwert +/-	
Current Input Strom-Eingang	mA mA mA	0.000 10.000 20.000	0.002 10.002 20.002	0.002 0.004 0.005	
Enequency Input Frequenz-Eingang	Hz Hz Hz	0.0 1000.0 8000.0	0.0 999.9 8000.1	0.0 1.0 2.0	

Functional Safety Check Funktionaler Sicherheitscheck

This unit has passed the complete Functional Safety Check. All voltages and currents produced by this unit are within tolorances.

Dieses Cerätihat den vollständigen funktionalen Sicherheitsröreck bestanden. Alle von diesem Gerät produzierten Spannungen und Ströme sind innerhalb der Toleranz.

Date, Signature: 03/03/2020,

Christips Rily

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

CC1803

# Calibration Certificate Kalibrations-Zertifikat

# Simubox MID

Page 1 of 2 Seite 1 of 2

Production Number Fabrikationsnummer	8784351	
Serial Number Seriennummer	JA0FE402000	
Manufacturer Hersteller	Endress+Hauser Flowtec AG CH-4153 Reinach	
Cate Of Calibration Kelibriedatum	03/03/2020	
Location Ort	DG-Greenwood	
Testing Instruction Prüfanweisung	CalCenter_2	
Test Program Prüfprogramm	V1.01.10	
Test Engineer Prüfer	Riley	
Used Test-/Cslibration Interface Verwantleic Prif-Kalibrierschrittstelle		
Used Test-/Celibration Tools Verwendets Prüf-/Kalibriermittel	Keithley DMM2700 due 07/2020 Yokogawa CAL100 due 07/2020	
Max. Deviation (Specification) Max. Abwe chung (Spezifikation)		
Current Source Stromquelle	0,01% of and value / des Endwartes (20mA) + 0,02% of signal / des Signale	
Frequency Source Frequenzgober	0,01% of signal / des Signals	
Notes Bernerkungen	The above mentioned calibration tools are traceable to national standards ( NIST	
	Die oben genannten Kalibriermittel sind rückführbar auf nationale Normale	

Date, Signature: 03/03/2020,

Autor Rily

Electrical/Control Panels – PLC/SCADA Programming – Instrumentation Calibrations

10-830 Industrial Ave. Ottawa, ON K1G-4B8 Ph. 613 248-1999 Fax: 613 248-1997

# Calibration Certificate Kalibrations-Zertifikat

### SimuBox MID Production Number / Fabrikationsnummer: Ser al Number / Berlennummer:

6784351 JA0FE402000

Page 2 cf 2 Seite 2 of 2

Measuring Data On Incoming Inspection Messidaten bei der Eingongsprüfung Gebusten Mein Values / Berechnete Nitstwerte)	Rated Value Vorgabewert [JM]	Meas, Value Messwert [µV]	Limit Value +/- Grenzweit +/- [µV]	Pass / Fail Gul/Fehlerhait
Meas. Baoge 1	57.0	57.0	1.0	Pass/Gut
Meas, Range 2	334.0	332.8	.3.0	Pass/Gut
Meas, Range 3	2064.0	2061.9	10.0	Pass/Gut
Meas. Range 4	11826.0	11821.3	20.0	Pass/Gut

Rated Value Vorgabewert [µV]	Meas, Value Messwert [µV]	Limit Value +/- Grenzwert +/- [µ ^M ]
50.0	49.8	0.5
300.0	299.9	1.0
2000.0	1999.8	3.0
10000.0	9999.5	5.0
	Vorgabewert [µV] 50.0 300.0 2000.0	Vorgabowert [μV]         Mesewart [μV]           50.0         49.8           300.0         299.9           2000.0         1999.8

Date. Signature: 03/09/2020,

Austin & Rily